Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stimmzellen für die Erkennung von Stimmen

23.08.2011
Für die Verarbeitung mündlicher Informationen der Artgenossen sind besondere Nervenzellen reserviert

Die Stimme des Menschen ist genauso charakteristisch wie sein Gesicht – häufig lässt sich ein Bekannter über eine Nachricht auf dem Anrufbeantworter identifizieren, selbst wenn er vergessen hat seinen Namen zu nennen. Der Hauptbereich der Gesichtserkennung liegt im unteren Schläfenlappen.


Zwei Rufe von Rhesusaffen (oben: Amplitude der Laute über die Zeit; unten: Energie für jede Frequenz über die Zeit) © Catherine Perrodin/MPI für biologische Kybernetik


Links: Abbildung des Hörkortex eines Affen (schwarze Linien) und der Cluster, in dem bevorzugt Stimmen verarbeitet werden (rot). Rechts: Messungen einer Stimmzelle, die deutlich stärker auf Affenstimmen als auf andere Geräusche reagiert. © Catherine Perrodin/MPI für biologische Kybernetik

Dort treten gehäuft Nervenzellen auf, die auf Gesichter deutlich stärker reagieren als auf andere Bilder. Forscher des Max-Planck-Instituts für biologische Kybernetik in Tübingen haben sich auf die Suche nach vergleichbaren Strukturen bei der Verarbeitung von Stimminformationen im Gehirn gemacht. Bei Rhesusaffen sind sie wiederum im Schläfenlappen fündig geworden: Sie sind auf „Stimmzellen“ gestoßen, die sehr selektiv auf Rufe und Laute der Artgenossen ansprechen.

Die Augen gelten bei Mensch und Affe als vorherrschende Sinnesorgane. Im sozialen Umgang miteinander werden Gesichter von Verwandten und Bekannten augenblicklich erkannt und ihre Stimmung gedeutet. Fällt beim Menschen die Gesichtserkennung aus, eine Erkrankung, die auch Gesichtsblindheit genannt wird, kann der Betroffene seine Mitmenschen nicht unterscheiden, durchaus aber individuelle Gesichter von Hunden oder Schafen erkennen. „Die Stimmen der Mitmenschen sind ähnlich speziell und in sozialen Zusammenhängen von großer Bedeutung. Es war zu erwarten, dass auch sie von einzelnen Nervenzellen anders verarbeitet werden als andere Hörinformationen“, meint Catherine Perrodin vom Max-Planck-Institut für biologische Kybernetik.

Die Forscherin hat zusammen mit Christoph Kayser und Nikos K. Logothetis vom gleichen Institut sowie Christopher I. Petkov vom Institute of Neuroscience der Newcastle University (UK) neue Experimente zur Verarbeitung von Stimmen durchgeführt. Sie führten dabei frühere Untersuchungen fort, bei denen über funktionelle Magnetresonanztomografie der bei der Stimmverarbeitung aktive Hirnbereich sichtbar gemacht worden war. Nun zeichneten sie die Aktivität einzelner Nervenzellen in diesem Hirnbereich auf.

Die Forscher haben erstmals in systematischer Arbeit „Stimmzellen“ im Schläfenlappen des Gehirns nachgewiesen. So nennen sie – analog zu den „Gesichtszellen“ bei der Gesichtserkennung – Nervenzellen, die mindestens doppelt so stark auf Stimmen von Artgenossen reagieren wie auf Stimmen anderer Tiere oder Geräusche aus anderen Quellen. Die Stimmzellen kamen in bestimmten Clustern gehäuft vor, jedoch deutlich weniger konzentriert als Gesichtszellen im Hauptbereich der Gesichtserkennung.

Vergleiche der Messungen an Gesichts- und Stimmzellen zeigten, dass die Stimmzellen selektiver auf individuelle Stimmen ansprachen als Gesichtszellen auf individuelle Gesichter. So reagierten die hochspezialisierten Stimmzellen nur auf etwa ein Fünftel der Rufe der Artgenossen, während in früheren visuellen Studien Gesichtszellen im Schnitt auf rund 40 bis 60 Prozent der Gesichter reagierten.

„Möglicherweise lässt sich das dadurch erklären, dass die Gesichter der Wirbeltiere mit zwei Augen, Nase und Mund sich in den Grundzügen stark gleichen. Dagegen gibt es bei Stimmen ein viel größeres Variationsspektrum. Dank ihrer spezialisierten Darstellung von Stimmen können die Stimmzellen effizienter arbeiten“, erklärt Catherine Perrodin. In den Experimenten hatten die Forscher einen repräsentativen Mix aus Stimmen von Rhesusaffen eingesetzt. Als Vergleich dienten Stimmen anderer Arten wie Pferd und Hund sowie Umgebungsgeräusche wie ein auffliegender Vogelschwarm, laufendes Wasser und Donnergrollen.

Die Hirnregion der Stimmzellen im Schläfenlappen ist bei Affe und Mensch prinzipiell gleich aufgebaut. Daher gehen die Forscher davon aus, dass sich die Ergebnisse auf den Menschen übertragen lassen. Sie wollen im nächsten Schritt untersuchen, welche Anteile der komplexen Hörinformation einer Stimme die Wiedererkennung des Sprechers und welche Anteile die Einschätzung seiner Stimmungslage ermöglichen. Außerdem interessiert sie, ob die Stimmzellen Reize verschiedener Sinne, etwa auch visuelle Informationen, verarbeiten können. „Bisher wurden Stimmen und die mündliche Kommunikation häufig nur im Zusammenhang mit Sprache untersucht“, sagt Catherine Perrodin, „dabei sind sie auch als nichtverbale Laute interessant, die Bedeutung des Gesagten kommt als zusätzliche Information obendrauf.“

Ansprechpartner
Catherine Perrodin
Max-Planck-Institut für biologische Kybernetik, Tübingen
Telefon: +49 7071 601-1701
E-Mail: catherine.perrodin@tuebingen.mpg.de
Janna Eberhardt
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Telefon: +49 7071 601-444
E-Mail: presse@tuebingen.mpg.de
Originalveröffentlichung
Catherine Perrodin, Christoph Kayser, Nikos K. Logothetis, Christopher I. Petkov
Voice Cells in the Primate Temporal Lobe
Current Biology, 23. August 2011, doi: 10.1016/j.cub.2011.07.028

Catherine Perrodin u.a. | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften