Stillstand am Fluss? Fließgewässer‐Libellen reagieren langsamer auf den Klimawandel

Der Frühe Schilfjäger (Brachytron pratense), eine der in der Studie untersuchten Arten, ist eine an stehende Gewässer angepasste Großlibellenart aus der Familie der Edellibellen. Copyright: Christian Hof, BiK-F<br>

Eine heute im Fachmagazin „Biology Letters“ online erschienene Studie hat die Anpassungsfähigkeit der Flugkünstler auf klimatische Veränderungen untersucht. Es zeigte sich, dass Libellenarten, deren Larven in Tümpeln und Teichen leben, mit dem Klimawandel besser zurechtkommen, als ihre in Bächen und Flüssen lebenden Artgenossen.

Für die Untersuchung hatten Wissenschaftler des Biodiversität und Klima Forschungszentrums (BiK-F) und weiterer europäischer Forschungseinrichtungen das tatsächliche und potentielle Vorkommen europäischer Libellenarten in 2006 und 1988 verglichen.

Viele Libellenarten haben sich auf einen bestimmten Gewässertyp spezialisiert. Während die Larven einiger Libellenarten ausschließlich in stehenden Gewässern (Tümpel, Teiche und Seen) vorkommen, haben andere eine Vorliebe für Fließgewässer wie Bäche und Flüsse. Hat der Lebensraum einen Einfluss darauf, wie schnell die jeweilige Libellenart in klimatisch geeignetere Lebensräume ausweichen kann, wenn sich die Bedingungen am bisherigen ‚Wohnort‘ ändern? „Um das zu untersuchen, haben wir Daten zu 88 europäischen Libellenarten daraufhin analysiert, inwieweit sich die tatsächliche Verbreitung mit den Lebensräumen deckt, die sie laut unserem Modell potentiell in Europa besiedeln könnten“, erklärt Dr. Christian Hof, BiK-F, der Leitautor der Studie.

Stabilität des Lebensraumes hat Einfluss auf Ausbreitungsfähigkeit
Der Vergleich ergab, dass Stillgewässer-Libellenarten ihre potentiellen Lebensräume, d.h. solche, die klimatisch geeignet wären, besser ausnutzen als Fließgewässer-Libellenarten. Das galt sowohl 1988 als auch knapp zwanzig Jahre später im Jahr 2006. Dieses unterschiedliche Ausbreitungsverhalten der Libellenarten erklären die Wissenschaftler damit, dass Stillgewässer langfristig gesehen ein instabiler Lebensraum für die Insekten sind. Teiche und Tümpel verlanden und verschwinden damit als Lebensraum schneller als Bäche oder Flüsse. Not erfordert Lösungen und daher liegt es nahe, dass Stillgewässer-Libellenarten dieses Risiko durch höhere Ausbreitungsfähigkeit kompensieren.
Auf stehende Gewässer spezialisierte Libellenarten haben im Klimawandel Vorteile
Die höhere Ausbreitungsfähigkeit, die Stillgewässer-Libellenarten evolutionär herausgebildet haben, kommt ihnen bei klimatischen Veränderungen zu Gute. Denn wer mobiler ist, kann leichter seinen Standort wechseln. Dies belegen auch die Daten: Modellierungen, die basierend auf den Daten zum tatsächlichen Vorkommen in 1988 das potentielle Vorkommen der Libellenarten in 2006 berechnen, überschätzen die Verbreitungsgebiete der Fließgewässer-Libellen – denn diese erreichen aufgrund ihrer geringeren Ausbreitungsfähigkeit die für sie geeigneten neuen Lebensräume oft nicht. Bei Stillgewässer-Libellenarten ist dies nur zu einem geringen Teil der Fall.
Bisheriges artenübergreifendes Urteil muss revidiert werden
Libellen sind bis zu 40 km/h schnell und können in wenigen Tagen bis zu 1000 km weit fliegen. Deshalb wurde bisher angenommen, dass die Insekten wahrscheinlich auch drastische Klimaveränderungen durch Abwanderung überleben können. „Da jedoch die Ausbreitungsfähigkeit von Libellenarten aus verschiedenen Lebensräumen unterschiedlich ist, kann man sie in Bezug auf Anpassung an klimatische Veränderungen nicht einfach über einen Kamm scheren“, resümiert Hof die Ergebnisse der gemeinsam mit Wissenschaftlern der Philipps-Universität Marburg, dem Zentrum für Makroökologie, Evolution und Klima in Kopenhagen (Dänemark) und mit dem Nationalen Museum für Naturwissenschaften in Madrid durchgeführten Studie mit Blick auf den Klimawandel.
Studie:
Hof, C., Brändle, M., Dehling, D.M., Munguía, M., Brandl, R., Araújo, M.B., & Rahbek, C. (2012). Habitat stability affects dispersal and the ability to track climate change. Biology Letters. doi: 10.1098/rsbl.2012.0023
Pressebilder:
Weitere Pressebilder stehen zum Download in 300 dpi unter http://www.bik-f.de/root/index.php?page_id=152 bereit.

Für weitere Informationen wenden Sie sich bitte an:

Dr. Christian Hof (Erstautor)
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel.: 0176 205 189 27
E-Mail: christian.hof@senckenberg.de
oder
Sabine Wendler
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F), Pressereferentin
Tel.: 069 7542 1838
E-Mail: sabine.wendler@senckenberg.de
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wechselwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK-F) seit 2008 im Rahmen der hessischen Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren eng mit regionalen, nationalen und internationalen Institutionen aus Wissenschaft, Ressourcen- und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben. Mehr unter http://www.bik-f.de

Media Contact

Sabine Wendler Senckenberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer