Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoff ist nicht so träge wie man denkt - Die neue Erkenntnis soll zu besseren Halbleitermaterialien führen

11.01.2010
Stickstoff ist als Hauptbestandteil der Luft ein allgegenwertiges, aber trotzdem wenig beachtetes Element. Das Molekül gilt als reaktionsträge, man nennt es auch inert.

Im Labor arbeitet man deshalb immer dann unter Stickstoffatmosphäre, wenn Sauerstoff oder die Feuchtigkeit der Luft zu aggressiv für empfindliche Proben sind. Der Grund für die Trägheit: Zwei Stickstoffatome sind im Molekül derart fest aneinandergebunden, dass sie für ihre Umgebung kaum Interesse haben.

Forscher des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) kratzen nun an dem sauberen Stickstoff-Image.

Im Fachmagazin Physical Review Letters erklären sie, was tatsächlich passiert, wenn Stickstoff mit einem Festkörper, wie zum Beispiel Zinkoxid in Verbindung tritt.

"Unsere Ergebnisse erklären, warum es schwierig ist, die elektrische Leitfähigkeit von Halbleitermaterialien durch Dotieren mit Stickstoff zu ändern", sagt Prof. Norbert Nickel vom HZB. Zu dieser Aussage kommt er aufgrund von Berechnungen, die sich aus der Dichtefunktionaltheorie ableiten.

Nickels Berechnungen ergeben, dass das Stickstoffmolekül mit dem Zinkoxid-Gitter in Wechselwirkung tritt und dabei Bindungen zwischen Zink und Sauerstoff aufbricht. In der Folge entstehen im Kristallgitter Defekte, die zu einer verminderten elektrischen Leitfähigkeit führen. "Dieser Reaktionsweg ist typisch für eine ganze Reihe von sogenannten Verbindungshalbleitern, zum Beispiel Magnesiumoxid oder Natri-umchlorid", sagt Prof. Nickel.

Verbindungshalbleiter werden in der Elektronik und Optoelektronik verwendet. Sie dienen als Basismaterialien, deren elektrische Leitfähigkeit durch den gezielten Einbau von Fremdatomen, das sogenannte Dotieren, erhöht werden kann. Dabei ist es nicht immer einfach, das Fremdatom an der richtigen Stelle im Kristallgitter des Halbleiters zu platzieren. Bislang ungeklärt blieb beispielsweise die im Experiment gefundene Tatsache, dass das Dotieren von Zinkoxid selbst mit hoher Stickstoffkonzentration kaum zu mehr Ladungsträgern im Kristall führt. Eine mögliche Antwort haben die Forscher um Prof. Nickel nun gegeben: die eingeschleusten Stickstoffatome finden sich im Inneren des Halbleiters zu Stickstoffmolekülen zusammen und diese treten in beschriebener Weise in Wechselwirkung mit dem Kristallgitter.

"Zunächst einmal ist die Arbeit Grundlagenforschung. Sie liefert Erkenntnisse darüber, wie sich Stoffe verhalten und welchen Reaktionsmechanismen sie unterliegen", sagt Prof. Norbert Nickel. Doch darüber hinaus können die Erkenntnisse helfen, den Dotierprozess zu optimieren.

Originalarbeit in Phys. Rev. Lett. 103, 145501 (2009), DOI: 10.1103/PhysRevLett.103.145501
"Defects in compound semiconductors caused by molecular nitrogen"
N. H. Nickel and M. A. Gluba
Weitere Informationen:
HZB
Kekuléstr. 5
12489 Berlin
Prof. Dr. Norbert Nickel
Institut Silizium-Photovoltaik
Tel.: 030-8062-1301, -1317
nickel@helmholtz-berlin.de
Pressestelle:
Dr. Ina Helms
Tel.: 030 / 8062-2034
ina.helms@helmholtz-berlin.de
Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.

Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.

Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de/pubbin/news_datei?did=4064
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie