Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Stickstoff aus dem Meer entkommt

03.03.2009
Vorhersagen über die Rolle des Ozeans für das Weltklima sind auf ein tiefgreifendes Verständnis der Stoffkreisläufe im Meer angewiesen. Bei den Stickstoffverlusten lag man bisher falsch. Eine neue Studie deckt nun die komplexen Zusammenhänge in der Sauerstoffminimumzone des tropischen Südostpazifiks auf.

In Folge der globalen Erwärmung dehnen sich Regionen sauerstoffarmen Wassers - so genannte Sauerstoffminimumzonen - in den Weltmeeren immer weiter aus. Das hat weitreichende Auswirkungen auf den Lebensraum Meer und die Fischereiwirtschaft, da höhere Organismen diese Regionen meiden.

Auch die globalen Kreisläufe von Kohlenstoff und Stickstoff sind eng mit Sauerstoffminimumzonen verknüpft. Ein detailliertes Verständnis dieser Kreisläufe ist daher unverzichtbar, um die Auswirkungen des fortschreitenden Klimawandels auf die Weltmeere und mögliche Rückkopplungen vorherzusagen.

Eine im Fachjournal "PNAS" der Amerikanischen Akademie der Wissenschaften erschienene Studie unter der Leitung von Phyllis Lam vom Max-Planck-Insitut für Marine Mikrobiologie in Bremen bringt uns diesem Verständnis einen großen Schritt näher.

Die Forscher beschäftigten sich mit dem Stickstoffkreislauf im tropischen Südostpazifik rund um die peruanische Sauerstoffminimumzone. Diese Region ist eine von drei Meeresregionen, in denen Stickstoff aus dem Meerwasser entweicht. "Lange Zeit wurde dieser Verlust auf Denitrifizierung zurückgeführt. Dabei wird Nitrat in Luftstickstoff umgewandelt, der dann in die Atmosphäre entweichen kann", erklärt Lam. "Dieses Bild wandelt sich allerdings: Scheinbar sind so genannte Anammox-Bakterien für den Großteil des "verlorenen" Stickstoffs verantwortlich. Bisher war jedoch unklar, woher die Anammox-Bakterien die "Rohstoffe" für diese Umwandlung nehmen." Zudem ist im Untersuchungsgebiet keine Denitrifizierung messbar. Das stellt unser Verständnis vom eng verbundenen Kohlenstoffkreislauf in Frage - wenn es nicht die Denitrifizierung ist, welcher Prozess verantworte dann in sauerstoffarmen Wasserkörpern den Abbau organischen Materials?

Lams Erkenntnisse erschüttern bisherige Annahmen über den Stickstoffkreislauf in der peruanischen Sauerstoffminimumzone. Sowohl Experimente als auch molekulare Untersuchungen deuten darauf hin, dass mehrere Prozesse (mit Bezeichnungen, die den Laien durchaus fordern) beteiligt sind: Der Großteil des Stickstoffs geht tatsächlich durch Anammox verloren. Dies ist unmittelbar an die Nitratreduktion und aerobe Ammoniakoxidation (den ersten Schritt der Nitrifizierung) als Quellen des NO2- gekoppelt. Das erforderliche NH4+ wiederum stammt aus der dissimilatorischen Nitratreduktion (DNRA) und Remineralisierung von organischem Material durch Nitratreduktion und vermutlich mikroaerobe Respiration. Die Bedeutung der einzelnen Prozesse variiert zwischen Küstenregionen und dem offenen Ozean ebenso wie in unterschiedlichen Tiefenschichten der Sauerstoffminimumzone. Zudem erstaunten die Forscher die hohen Umsatzraten der DNRA - bisher vermutete man, dass dieser Prozess im offenen Ozean keine Rolle spielt.

Mit ihren Erkenntnissen stürzen die Bremer Forscher die vorherrschende Meinung, dass Nitrat aus der Tiefsee für den gesamten Stickstoffverlust des Ozeans verantwortlich ist. Dessen Anteil betrug ersten Abschätzungen zufolge nur etwa die Hälfte, während die restlichen Verluste aus remineralisiertem Stickstoff - also solchem, der aus organischem Material stammte - erwuchsen.

Bisherige Berechnungen des Stickstoffverlusts, die sich alleine auf Messungen des Nitratdefizits berufen, unterschätzen den tatsächlichen Verlust aus dem Ozean also vermutlich substantiell - gerade wenn die Ergebnisse auf die anderen Sauerstoffminimumzonen der Welt übertragbar sind. "Insbesondere die Rolle des remineralisierten Stickstoffs muss überdacht werden", betont Lam. "Nur so werden verlässliche Vorhersagen über die zukünftige Rolle der Ozeane für das Weltklima möglich."

Hintergrund 1: Der Stickstoffkreislauf im Meer

Alles Leben auf der Erde hängt vom Stickstoff ab, denn er ist unverzichtbar für Zellbestandteile wie Proteine und die DNA. Die Organismen können jedoch nicht alle Verbindungen dieses Elements nutzen. Daher bestimmt im Ozean nur ein Teil der Stickstoffverbindungen die Produktivität des gesamten Ökosystems. Die Umwandlung einer Verbindung in eine andere übernehmen spezialisierte Mikroorganismen.

Im Ozean wird Stickstoff in Form von Ammonium (NH4+) hauptsächlich durch den Abbau organischer Verbindungen frei gesetzt. In einem zentralen Schritt, bekannt als Nitrifizierung, wird Ammonium in Nitrit (NO2-) und dann in Nitrat (NO3-) umgewandelt. Dieser Prozess verbraucht Sauerstoff. Das Nitrat wird anschließend ohne Sauerstoff in mehreren Zwischenschritten in gasförmigen elementaren Stickstoff (Luftstickstoff, N2) umgewandelt. Diese Reaktion nennt sich Denitrifizierung. Alle Umwandlungen werden durch Mikroorganismen vermittelt. Das N2 entweicht als Gas aus dem Meer. Vor ein paar Jahren entdeckten Forscher vom Bremer Max-Planck-Institut den Prozess der anaeroben Oxidation von Ammonium (ANAMMOX) im Meer. Unter sauerstofffreien Bedingungen wandeln Anammox-Bakterien Ammonium direkt mit Nitrit in gasförmigen Stickstoff (N2).

Hintergrund 2: Sazerstoffminimumzonen

Die Sauerstoffminimumzone ist eine Wasserschicht mit sehr geringem Sauerstoffgehalt, üblicherweise in 200 bis 1000 m Wassertiefe. Zwar machen die sauerstoffarmen Wassermassen nur etwa 0,1% des Meeresvolumens aus, dennoch sind sie für 20-40% des Stickstoffverlusts verantwortlich.

Hintergrund 3: Die Methoden

Lam und ihre Kollegen nutzten für ihre Analyse das stabile Isotop des Stickstoffs (15N). Das ermöglicht die detaillierte Untersuchung einzelner Stoffumwandlungen. Zudem analysierten sie die parallele Genexpression der anwesenden Organismen - wenn diese die zellinterne Maschinerie zum Bau der notwendigen Enzyme anwerfen.

Fanni Aspetsberger

Rückfragen an:
Dr. Phyllis Lam Tel. +49 (0)421 2028 644; plam@mpi-bremen.de
oder an die Pressesprecher:
Dr. Manfred Schlösser Tel. +49 (0)421 2028 704; mschloes@mpi-bremen.de
Dr. Fanni Aspetsberger Tel. +49 (0)421 2028 704; faspetsb@mpi-bremen.de
Originalartikel: Revising the Nitrogen Cycle in the Peruvian Oxygen Minimum Zone. Phyllis Lam, Gaute Lavik, Marlene M. Jensen, Jack van de Vossenberg, Markus Schmid, Dagmar Woebken, Dimitri Gutiérrez, Rudolf Amann, Mike S. M. Jetten and Marcel M. M. Kuypers. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.0812444106
Beteiligte Institute:
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.
Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, the Netherlands.
Dirección de Investigaciones Oceanográficas, Instituto del Mar del Perú, Esquina Gamarra y General Valle S/N Chucuito Callao, Peru.

Dr. Fanni Aspetsberger | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics