Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stickstoff-Fixierung von Pflanzen – Millionen Jahre alte Symbiose

10.06.2014

Wenn Pflanzen mit Stickstoff-fixierenden Bakterien eine Zweckgemeinschaft eingehen, ziehen aus dieser Symbiose beide Partner Wettbewerbsvorteile:

Die Pflanzen erhalten von den Bakterien Stickstoff, den sie zum Wachstum benötigen, aber nicht selbst fixieren können. Die Mikroorganismen wiederum finden in den Pflanzenwurzeln Nahrung und geschützten Lebensraum. Bisher war nicht bekannt, wie sich diese Symbiosen zwischen Bakterien und Pflanzen während der Evolution entwickelt haben.


Knöllchenbakterien an Pflanzenwurzeln

Ein internationales Expertenteam hat nun herausgefunden, dass bereits in einem sehr frühen Evolutionsschritt die Grundlage für alle Symbiosen zwischen Pflanzenarten und Stickstoff-fixierenden Bakterien gelegt wurde.

Stickstoff ist ein essentieller Bestandteil biologischer Moleküle, insbesondere von Makromolekülen wie Proteinen und Nukleinsäuren. Obwohl er in der Atmosphäre in riesigen Mengen als molekularer Stickstoff (N2) vorkommt, kann er von Pflanzen in dieser Form nicht verwertet und genutzt werden. Nur bestimmte Bakterien, sogenannte Stickstoff-Fixierer, sind in der Lage, im Bodenwasser gelösten elementaren Stickstoff zu binden.

Im Laufe der Evolution haben sich verschiedene symbiotische Beziehungen zwischen den bakteriellen Stickstoff-Fixierern und bestimmten Pflanzenfamilien im Boden entwickelt. In dieser für beide Partner vorteilhaften Lebensgemeinschaft liefern die Bakterien den essentiell benötigten Stickstoff als Ammonium an die Pflanzen, die wiederum Kohlenhydrate und andere Nährstoffe an die Bakterien abgeben. Diese Symbiose wird meist als Wurzelknöllchen sichtbar – Ansammlungen von Bakterienkolonien, die an den Wurzeln ihrer Wirtspflanzen anhaften.

Doch wann, wie und bei welchen Vertretern haben sich im Laufe der Evolution solche tiefgreifenden, für die Pflanzen höchst vorteilhaften Entwicklungsschritte vollzogen? Diesen Fragen ging ein Expertenteam aus Amsterdam, Dundee und Jena nach. Grundlage ihres Forschungsansatzes war eine geeignete Datenbank, die alle bekannten Stickstoff-fixierenden Pflanzenarten beinhaltet.

„In unserer globalen Datenbank zu Pflanzenmerkmalen haben wir neben vielen anderen Pflanzeneigenschaften auch das Merkmal der Stickstoff-Symbiose aufgenommen“ sagt Dr. Jens Kattge vom Max-Planck-Institut für Biogeochemie in Jena, Koautor der Studie. Diese, auch vom Deutschen Zentrum für integrative Biodiversitätsforschung (iDiv) geförderte Datenbank über bisher etwa 70.000 weltweit erfasste Pflanzenarten wurde mit weiteren Daten zu Wurzelknöllchen-Symbiosen ergänzt. So entstand die erste umfassende Datenbank aller bekannten Pflanzenarten, die in symbiotischer Beziehung mit bakteriellen Stickstoff-Fixierern leben.

Kombiniert mit genetischen Verwandtschaftsanalysen wurde auf Grundlage der Datenbank ein umfassender Stammbaum aller Pflanzenarten bezüglich der Befähigung zur Stickstoff-Fixierung erstellt. Mathematische Berechnungen lieferten die erstaunliche Entstehungsgeschichte der Symbiose: Allen Stickstoff-fixierenden Pflanzen liegt mit höchster Wahrscheinlichkeit eine einzige gemeinsame, grundlegende Veränderung zu Grunde, die sie zur Lebensgemeinschaft mit bakteriellen Symbionten befähigt. Aufbauend auf dieser vor über 100 Millionen Jahren errungenen Eigenschaft haben sich nachfolgend verschiedene symbiotische Beziehungen zwischen manchen Pflanzenfamilien und verschiedenen bakteriellen Stickstoff-Fixierern entwickelt.

„Mit der Evolution dieser Symbiose wurde der globale Stickstoff-Kreislauf vor 100 Millionen Jahren grundlegend verändert“ so Jens Kattge. „Die Welt sähe ohne sie heute anders aus.“ In einigen Pflanzengruppen wurden diese Symbiosen im Laufe der Evolution stabil weitergeführt, in anderen Pflanzen aber auch wieder verloren.

Mit Hilfe dieser Rekonstruktion der evolutionären Entwicklung kann die detaillierte genetische Grundlage und damit der Mechanismus erforscht werden, der Pflanzen befähigt, mit den Stickstoff-Fixierern eine Symbiose einzugehen. Mit den neuen Erkenntnissen steigt die Hoffnung, dass die Wirkmechanismen der Symbiose möglicherweise auf landwirtschaftliche Nutzpflanzen übertragen werden können. Denn in Nahrungsmittel-Pflanzen wie Mais und Weizen ist die Fähigkeit zur Symbiose genetisch nicht verankert. Diesen Pflanzen muss zur Ertragssteigerung in der Regel mineralischer Stickstoff als Kunstdünger angeboten werden.

Da Stickstoff in Böden meist nur in geringen Mengen vorhanden ist, stellt er einen für das Pflanzenwachstum begrenzenden Faktor dar. Mit Stickstoff-Fixierern symbiotisch lebende Pflanzen können hingegen auch auf kargen, nährstoffarmen Böden gut gedeihen und haben dadurch Selektionsvorteile. Solche Pflanzen werden in der Landwirtschaft zur Stickstoff-Anreicherung der Böden angepflanzt. Dazu zählen beispielsweise die Leguminosen (Hülsenfrüchtler), die mit bakteriellen Rhizobien zusammen leben.

Für biogeochemische Stoffkreisläufe spielen diese Symbiosen eine wichtige Rolle: Sie sind essentiell für die Stickstoff-Verfügbarkeit in vielen natürlichen Ökosystemen und tragen entscheidend zur Neubesiedlung von Ökosystemen sowie deren Biodiversität bei. Als limitierender Faktor des Pflanzenwachstums ist Stickstoff darüber hinaus auch wichtig für die pflanzliche Biomasse-Produktion, und damit für den globalen Kohlenstoff-Kreislauf. Die Symbiose wird daher als eine der wichtigsten auf unserem Planeten angesehen.

Veröffentlichung:
Werner, G. D. A. et al. A single evolutionary innovation drives the deep evolution of symbiotic N2 fixation in angiosperms. Nat. Commun. 5:4087, doi: 10.1038/ncomms5087 (2014).

Kontakt:
Dr. Jens Kattge
Max-Planck-Institut für Biogeochemie
Forschungsgruppe “Funktionelle Biogeographie”
Hans-Knöll-Strasse 10, 07745 Jena
Tel: +49 3641 576226
email: jkattge(at)bgc-jena.mpg.de
https://www.bgc-jena.mpg.de/functionalbiogeography/index.php/Main/HomePage

Weitere Informationen:

http://www.bgc-jena.mpg.de/index.php/Main/HomePage Max-Planck-Insitut für Biogeochemie
http://dx.doi.org/10.1038/ncomms5087 Publikation bei Nature Communications

Dr. Eberhard Fritz | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften