Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sternförmige Zellen des Gehirns helfen beim Lernen

07.09.2009
Jede Bewegung und jeder Gedanke wird durch die Weitergabe von Informationen zwischen Nervenzellen ermöglicht. Wenn wir in etwas besser werden oder dazu lernen, beruht dies auf effizienteren oder vermehrten Zellkontakten.

Wissenschaftler um das Max-Planck-Institut für Neurobiologie konnten nun zeigen, dass bestimmte Zellen des Gehirns, die Astrozyten, aktiv in den Informationsaustausch zwischen Nervenzellen eingreifen.

Die neuen Erkenntnisse fördern das Verständnis von Lernen und Gedächtnis, könnten aber auch in der Grundlagenforschung zu neurodegenerativen Krankheiten wie der Epilepsie und der Amyotrophen Lateralsklerose (ALS) eine wichtige Rolle spielen. (Nature Neurosci, 7.9.2009)

Lernen, um zu leben: Selbst Fruchtfliegen lernen, negative Gerüche zu meiden und auch beim Menschen baut nahezu alles Können auf Übung und Erfahrung auf. Das so Erlernte ermöglicht es uns, zu laufen, zu sprechen, logisch zu denken oder mit anderen Menschen sozial zu interagieren.

Lernen auf zellulärer Ebene
Um etwas zu lernen, also eine neue Information verarbeiten zu können, bauen Nervenzellen neue Verbindungen untereinander auf oder verstärken bestehende Verbindungen. Über spezielle Kontaktstellen, die Synapsen, kann eine Information von einer Zelle an die nächste weitergegeben werden. Entsteht eine Synapse, so ist die Weitergabe der neuen Information möglich - sie wird gelernt. Wird das Erlernte durch Übung verbessert, so werden einzelne Synapsen verstärkt: Eine ankommende Information löst bei der nachgeschalteten Nervenzelle eine viel stärkere Antwort aus, als an einer "normalen" Synapse. Dies geschieht wie folgt: An einer Synapse stehen die beiden kommunizierenden Nervenzellen nicht direkt in Kontakt sondern sind durch einen kleinen Spalt getrennt. Kommt eine Information an einer Synapse an, so wird der Botenstoff Glutamat in den Spalt abgegeben. Die nachgeschaltete Zelle bindet das Glutamat mithilfe spezieller Rezeptoren und löst so die Weitergabe der Information in dieser Zelle aus. Bei einer verstärkten Synapse gibt die informierende Zelle deutlich mehr Glutamat in den synaptischen Spalt ab, und/oder die informierte Zelle bindet besser Glutamat. Als Resultat wird die Information deutlich effektiver von Zelle zu Zelle weitergegeben.
Doch nicht so passive Helfer
Im Gehirn sind Teile von Nervenzellen und einzelne Synapsen häufig von sternförmigen Zellen umgeben, den Astrozyten. Astrozyten wurden bislang vor allem als Helfer der Nervenzellen angesehen. Sie ernähren Nervenzellen und fördern auch die Reifung von Synapsen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie haben nun mit einem internationalen Team gezeigt, dass Astrozyten noch eine deutlich aktivere Rolle zukommt: Sie beeinflussen die Möglichkeit einer Synapse, sich zu verstärken.

Astrozyten regulieren die Menge an Glutamat-Botenstoff im synaptischen Spalt, indem sie Glutamat über sogenannte Transporter aus dem Spalt entfernen. "Im Grunde kann man sich die Transporter wie kleine Staubsauger vorstellen", erklärt Rüdiger Klein, der Leiter der Studie. "Sie saugen überschüssiges Glutamat aus der Synapse ab und verhindern so zum Beispiel, dass Glutamat von einer Synapse zu einer benachbarten überschwappt." Dass es diese "Glutamatstaubsauger" gibt, war bekannt. Was Klein und seine Kollegen nun jedoch zeigen konnten ist, dass die nachgeschaltete Nervenzelle und der Astrozyt dabei miteinander kommunizieren und so die Menge der Glutamat-saugenden Transporter regulieren.

Signalweg mit weitreichenden Folgen
Dieser Kommunikation kamen die Neurobiologen auf die Spur, als sie das Signalmolekül EphrinA3 und seinen Bindungspartner, das EphA4, in Mäusen untersuchten. Ephrine und Eph-Rezeptoren sind häufig beteiligt, wenn sich Zellen gegenseitig erkennen oder beeinflussen. So fördern Astrozyten über EphrinA3/EphA4 auch die Reifung von Synapsen. "Völlig unerwartet war jedoch, dass es auch einen Einfluss in die andere Richtung gibt", so Klein. Fehlt der EphA4-Rezeptor in einer Nervenzelle, so bildet der benachbarte Astrozyt vermehrt Transporter aus. Diese saugen so viel Glutamat aus der betroffenen Synapse ab, dass diese nicht mehr verstärkt werden kann. Ein sicherer Nachteil beim Lernen.

Wie wichtig der EphrinA3/EphA4 Signalweg ist, bewiesen die Kontrollversuche. Fehlte der Bindungspartner EphrinA3 im Astrozyten, so wurde wie beim Fehlen von EphA4 eine synaptische Verstärkung aufgrund des Glutamat-Mangels unmöglich. Wurde das Vorkommen von EphrinA3 dagegen experimentell erhöht, so sank die Anzahl der Astrozyten-Transporter. Daraufhin sammelte sich Glutamat im synaptischen Spalt an, was schnell zu Zellschäden und Fehlfunktionen der betroffenen Synapsen führte.

Nächste Schritte
"Zurzeit untersuchen wir, über welche Mechanismen EphrinA3/EphA4 die Bildung der Transporter beeinflusst", sagt Rüdiger Klein zu den nächsten Schritten. Die Wissenschaftler hoffen so das Vorkommen und die Funktion dieser Transporter besser zu verstehen. Denn Fehlfunktionen der Astrozyten-Transporter spielen auch eine Rolle bei neurologischen und neurodegenerativen Krankheiten wie der Epilepsie und der Amyotrophen Lateralsklerose (ALS).
Originalveröffentlichung
Neuro-glia communication via EphA4/ephrinA3 modulates LTP through glial glutamate transport
Alessandro Filosa*, Sónia Paixão*, Silke D. Honsek, Maria A. Carmona, Lore Becker, Berend Feddersen, Louise Gaitanos, York Rudhard, Ralf Schoepfer, Thomas Klopstock, Klas Kullander, Christine R. Rose, Elena B. Pasquale, Rüdiger Klein
[*gleichrangiger Beitrag]
Nature Neuroscience, 7. September 2009
Kontakt:
Prof. Dr. Rüdiger Klein
Max-Planck-Institut für Neurobiologie, Martinsried
E-mail: martens@neuro.mpg.de
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
E-mail: merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/rd/mn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics