Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sternförmige Zellen des Gehirns helfen beim Lernen

07.09.2009
Jede Bewegung und jeder Gedanke wird durch die Weitergabe von Informationen zwischen Nervenzellen ermöglicht. Wenn wir in etwas besser werden oder dazu lernen, beruht dies auf effizienteren oder vermehrten Zellkontakten.

Wissenschaftler um das Max-Planck-Institut für Neurobiologie konnten nun zeigen, dass bestimmte Zellen des Gehirns, die Astrozyten, aktiv in den Informationsaustausch zwischen Nervenzellen eingreifen.

Die neuen Erkenntnisse fördern das Verständnis von Lernen und Gedächtnis, könnten aber auch in der Grundlagenforschung zu neurodegenerativen Krankheiten wie der Epilepsie und der Amyotrophen Lateralsklerose (ALS) eine wichtige Rolle spielen. (Nature Neurosci, 7.9.2009)

Lernen, um zu leben: Selbst Fruchtfliegen lernen, negative Gerüche zu meiden und auch beim Menschen baut nahezu alles Können auf Übung und Erfahrung auf. Das so Erlernte ermöglicht es uns, zu laufen, zu sprechen, logisch zu denken oder mit anderen Menschen sozial zu interagieren.

Lernen auf zellulärer Ebene
Um etwas zu lernen, also eine neue Information verarbeiten zu können, bauen Nervenzellen neue Verbindungen untereinander auf oder verstärken bestehende Verbindungen. Über spezielle Kontaktstellen, die Synapsen, kann eine Information von einer Zelle an die nächste weitergegeben werden. Entsteht eine Synapse, so ist die Weitergabe der neuen Information möglich - sie wird gelernt. Wird das Erlernte durch Übung verbessert, so werden einzelne Synapsen verstärkt: Eine ankommende Information löst bei der nachgeschalteten Nervenzelle eine viel stärkere Antwort aus, als an einer "normalen" Synapse. Dies geschieht wie folgt: An einer Synapse stehen die beiden kommunizierenden Nervenzellen nicht direkt in Kontakt sondern sind durch einen kleinen Spalt getrennt. Kommt eine Information an einer Synapse an, so wird der Botenstoff Glutamat in den Spalt abgegeben. Die nachgeschaltete Zelle bindet das Glutamat mithilfe spezieller Rezeptoren und löst so die Weitergabe der Information in dieser Zelle aus. Bei einer verstärkten Synapse gibt die informierende Zelle deutlich mehr Glutamat in den synaptischen Spalt ab, und/oder die informierte Zelle bindet besser Glutamat. Als Resultat wird die Information deutlich effektiver von Zelle zu Zelle weitergegeben.
Doch nicht so passive Helfer
Im Gehirn sind Teile von Nervenzellen und einzelne Synapsen häufig von sternförmigen Zellen umgeben, den Astrozyten. Astrozyten wurden bislang vor allem als Helfer der Nervenzellen angesehen. Sie ernähren Nervenzellen und fördern auch die Reifung von Synapsen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie haben nun mit einem internationalen Team gezeigt, dass Astrozyten noch eine deutlich aktivere Rolle zukommt: Sie beeinflussen die Möglichkeit einer Synapse, sich zu verstärken.

Astrozyten regulieren die Menge an Glutamat-Botenstoff im synaptischen Spalt, indem sie Glutamat über sogenannte Transporter aus dem Spalt entfernen. "Im Grunde kann man sich die Transporter wie kleine Staubsauger vorstellen", erklärt Rüdiger Klein, der Leiter der Studie. "Sie saugen überschüssiges Glutamat aus der Synapse ab und verhindern so zum Beispiel, dass Glutamat von einer Synapse zu einer benachbarten überschwappt." Dass es diese "Glutamatstaubsauger" gibt, war bekannt. Was Klein und seine Kollegen nun jedoch zeigen konnten ist, dass die nachgeschaltete Nervenzelle und der Astrozyt dabei miteinander kommunizieren und so die Menge der Glutamat-saugenden Transporter regulieren.

Signalweg mit weitreichenden Folgen
Dieser Kommunikation kamen die Neurobiologen auf die Spur, als sie das Signalmolekül EphrinA3 und seinen Bindungspartner, das EphA4, in Mäusen untersuchten. Ephrine und Eph-Rezeptoren sind häufig beteiligt, wenn sich Zellen gegenseitig erkennen oder beeinflussen. So fördern Astrozyten über EphrinA3/EphA4 auch die Reifung von Synapsen. "Völlig unerwartet war jedoch, dass es auch einen Einfluss in die andere Richtung gibt", so Klein. Fehlt der EphA4-Rezeptor in einer Nervenzelle, so bildet der benachbarte Astrozyt vermehrt Transporter aus. Diese saugen so viel Glutamat aus der betroffenen Synapse ab, dass diese nicht mehr verstärkt werden kann. Ein sicherer Nachteil beim Lernen.

Wie wichtig der EphrinA3/EphA4 Signalweg ist, bewiesen die Kontrollversuche. Fehlte der Bindungspartner EphrinA3 im Astrozyten, so wurde wie beim Fehlen von EphA4 eine synaptische Verstärkung aufgrund des Glutamat-Mangels unmöglich. Wurde das Vorkommen von EphrinA3 dagegen experimentell erhöht, so sank die Anzahl der Astrozyten-Transporter. Daraufhin sammelte sich Glutamat im synaptischen Spalt an, was schnell zu Zellschäden und Fehlfunktionen der betroffenen Synapsen führte.

Nächste Schritte
"Zurzeit untersuchen wir, über welche Mechanismen EphrinA3/EphA4 die Bildung der Transporter beeinflusst", sagt Rüdiger Klein zu den nächsten Schritten. Die Wissenschaftler hoffen so das Vorkommen und die Funktion dieser Transporter besser zu verstehen. Denn Fehlfunktionen der Astrozyten-Transporter spielen auch eine Rolle bei neurologischen und neurodegenerativen Krankheiten wie der Epilepsie und der Amyotrophen Lateralsklerose (ALS).
Originalveröffentlichung
Neuro-glia communication via EphA4/ephrinA3 modulates LTP through glial glutamate transport
Alessandro Filosa*, Sónia Paixão*, Silke D. Honsek, Maria A. Carmona, Lore Becker, Berend Feddersen, Louise Gaitanos, York Rudhard, Ralf Schoepfer, Thomas Klopstock, Klas Kullander, Christine R. Rose, Elena B. Pasquale, Rüdiger Klein
[*gleichrangiger Beitrag]
Nature Neuroscience, 7. September 2009
Kontakt:
Prof. Dr. Rüdiger Klein
Max-Planck-Institut für Neurobiologie, Martinsried
E-mail: martens@neuro.mpg.de
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
E-mail: merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/rd/mn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen