Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stem cells + nanofibers = Promising nerve research

08.11.2012
Researchers coax cells to grow and myelinate along thin fibers, with potential use in testing treatments for neurological diseases

Every week in his clinic at the University of Michigan, neurologist Joseph Corey, M.D., Ph.D., treats patients whose nerves are dying or shrinking due to disease or injury.


This shows an oligodendrocyte nerve cell (red/purple) wrapped around a polymer nanofiber (white/clear).

Credit: Univ. of Michigan/UCSF

He sees the pain, the loss of ability and the other effects that nerve-destroying conditions cause – and wishes he could give patients more effective treatments than what's available, or regenerate their nerves. Then he heads to his research lab at the VA Ann Arbor Healthcare System, where his team is working toward that exact goal.

In new research published in several recent papers, Corey and his colleagues from the U-M Medical School, VAAAHS and the University of California, San Francisco report success in developing polymer nanofiber technologies for understanding how nerves form, why they don't reconnect after injury, and what can be done to prevent or slow damage.

Using polymer nanofibers thinner than human hairs as scaffolds, researchers coaxed a particular type of brain cell to wrap around nanofibers that mimic the shape and size of nerves found in the body.

They've even managed to encourage the process of myelination – the formation of a protective coating that guards larger nerve fibers from damage. They began to see multiple concentric layers of the protective substance called myelin start to form, just as they do in the body. Together with the laboratory team of their collaborator Jonah Chan at UCSF, the authors reported the findings in Nature Methods.

The research involves oligodendrocytes, which are the supporting actors to neurons -- the "stars" of the central nervous system. Without oligodendrocytes, central nervous system neurons can't effectively transmit the electrical signals that control everything from muscle movement to brain function.

Oligodendrocytes are the type of cells typically affected by multiple sclerosis, and loss of myelin is a hallmark of that debilitating disease.

The researchers have also determined the optimum diameter for the nanofibers to support this process – giving important new clues to answer the question of why some nerves are myelinated and some aren't.

While they haven't yet created fully functioning "nerves in a dish," the researchers believe their work offers a new way to study nerves and test treatment possibilities. Corey, an assistant professor of neurology and biomedical engineering at the U-M Medical School and researcher in the VA Geriatrics Research, Education and Clinical Center, explains that the thin fibers are crucial for the success of the work.

"If it's about the same length and diameter as a neuron, the nerve cells follow it and their shape and location conform to it," he says. "Essentially, these fibers are the same size as a neuron."

The researchers used polystyrene, a common plastic, to make fibers through a technique called electrospinnning. In a recent paper in Materials Science and Engineering C, they discovered new techniques to optimize how fibers made from poly-L-lactide, a biodegradable polymer, can be better aligned to resemble neurons and to guide regenerating nerve cells.

They're also working to determine the factors that make oligodendrocytes attach to the long narrow axons of neurons, and perhaps to start forming myelin sheaths too.

By attaching particular molecules to the nanofibers, Corey and his colleagues hope to learn more about what makes this process work -- and what makes it go awry, as in diseases caused by poor nerve development.

"What we need to do for multiple sclerosis is to encourage nerves to remyelinate," he says. "For nerve damage caused by trauma, on the other hand, we need to encourage regeneration."

In addition to Corey, the research has been led by Chan, the Rachleff Professor of Neurology at UCSF, VAAAHS lab team member and U-M graduate Samuel J. Tuck, U-M biomedical engineering graduate student Michelle Leach, UCSF's Stephanie Redmond, Seonook Lee, Synthia Mellon and S.Y. Christin Chong, and Zhang-Qi Feng of U-M Biomedical Engineering.

Peripheral nerves, which have neurons at the center surrounded by cells called Schwann cells, can also be studied using the nanofiber technique. The system could also be used to study how different types of cells interact during and after nerve formation.

Toward creating new nerves, Corey's lab has collaborated with R. Keith Duncan, PhD, Associate Professor of Otolaryngology. Published in Biomacromolecules, they found that stem cells are more likely to develop into neurons when they are grown on aligned nanofibers produced in Corey's lab. They eventually hope to use this approach to build new nerves from stem cells and direct their connections to undamaged parts of the brain and to muscle.

Eventually, Corey envisions, perhaps nerves could be grown along nanofibers in a lab setting and then transferred to patients' bodies, where the fiber would safely degrade.

The research was supported by a VA Merit funding grant, the US National Multiple Sclerosis Society, the Harry Weaver Neuroscience Scholar Award, the Paralyzed Veterans of America and the National Institute of Neurological Disorders and Stroke (NS062796-02).

References:

Nature Methods 9, 917, (2012) doi:10.1038/nmeth.2105

Biomacromolecules, Article ASAP, DOI: 10.1021/bm301220k

Materials Science and Engineering: C, Volume 32, Issue 7, 1 October 2012, Pages 1779�

Important note for patients:

This research is still in the laboratory stages, and there are no immediate plans to perform studies in human patients. If you are interested in finding other opportunities to take part in medical research studies at U-M, please visit www.umclinicalstudies.org.

Kara Gavin | EurekAlert!
Further information:
http://www.umich.edu
http://www.umclinicalstudies.org

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics