Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stehen statt Liegen: Bochumer und Dortmunder Forscher messen Orientierung des Ras-Proteins

12.10.2012
Zellwachstumsprotein bildet Doppelpack auf der Zellmembran

Bochumer Biophysiker haben in Kooperation mit dem MPI Dortmund erstmals die Orientierung des membrangebundenen Proteins Ras gemessen. Das RUB-Team kombinierte drei biophysikalische Methoden – Infrarotspektroskopie, Computersimulationen und Fluoreszenzmessungen – und kam zu dem überraschenden Ergebnis, dass sich zwei Ras-Moleküle miteinander verbinden, um eine aufrechte Position auf der Membran einzunehmen.

Bislang ging man aufgrund von Computersimulationen davon aus, dass das Protein einzeln auf der Membran liegt. Ras ist der zentrale Schalter für das Zellwachstum, und eine Fehlfunktion dieses Proteins ist ein wichtiger Faktor bei der Krebsentstehung. „Diese Ergebnisse werfen ein völlig neues Licht auf die Nanocluster-Bildung von Ras an der Membran“, sagt Prof. Dr. Klaus Gerwert von der RUB-Fakultät für Biologie und Biotechnologie. Die Studie wurde vom Biophysical Journal als Titelgeschichte ausgewählt.

Orientierung beeinflusst Proteininteraktion

Die Orientierung eines Proteins beeinflusst seine Interaktionsmöglichkeiten mit anderen Proteinen. „Das ist vergleichbar mit der Situation, dass ein Gast einmal mit ausgebreiteten Armen empfangen wird oder aber der Gastgeber bei der Begrüßung auf der Couch liegen bleibt“, veranschaulicht Dr. Jörn Güldenhaupt, der die Orientierungsmessungen durchgeführt hat. Nur wenige biophysikalische Methoden erlauben es, die Proteinorientierung zu bestimmen. Die am Lehrstuhl für Biophysik etablierte ATR-FTIR-Spektroskopie ist eine davon.

Ras-Moleküle stützen sich gegenseitig

Die falsche Annahme, dass Ras auf der Membran liegt, basierte auf früheren Computersimulationen. Till Rudack aus dem Bochumer Forscherteam nahm Ras ebenfalls virtuell unter die Lupe. Das Ergebnis: Ein einzelnes stehendes Ras-Molekül kippt sehr schnell um, scheint also auf der Membran zu liegen. „Irgendetwas muss das Ras in unseren Messungen gestützt haben“, erzählt Till Rudack. „Und das konnte nur ein weiteres Ras-Molekül sein, das aber in der Simulation nicht vorhanden war.“ Tatsächlich ergaben weitere Computersimulationen von zwei sich gegenseitig stützenden Ras-Molekülen eine stabile stehende Orientierung – passend zu den Experimenten.

Fluoreszenz-Resonanz-Energie-Transfer: Ein molekularer Zollstock

Das Forscherteam bestätigte die Ergebnisse mit einem weiteren experimentellen Beweis mittels „FRET“ (Fluoreszenz-Resonanz-Energie-Transfer). Das ist aktuell die beste Methode, um Interaktionen zwischen zwei Proteinen nachzuweisen. Hierbei markieren Forscher die Ras-Proteine mit zwei verschiedenen Farbstoffen. Interagieren die Proteine, sind sie sehr dicht beieinander, so dass Energie von einem Farbstoff zum anderen übertragen wird. Wie mit einem Zollstock lässt sich aus dem Anteil der übertragenen Energie der Abstand zwischen den Proteinen messen. Für die Ras-Ras-Interaktion ermittelten die Biophysiker einen Abstand von 4,6 Nanometern, also Millionstel Millimetern. Das entsprach genau dem Abstand, den sie für ein „Doppel-Ras“ mit ihren Computersimulationen vorhergesagt hatten.

In der Gruppe stärker

Frühere Studien hatten bereits ergeben, dass Ras-Moleküle sich oft in kleinen Gruppen sammeln. Diese sogenannten Nanocluster bestehen aus vier bis zehn Ras-Proteinen. Bislang ging man davon aus, dass andere Proteine die Clusterbildung vermitteln müssen. „Wir konnten erstmals zeigen, dass Ras selbst aktiv daran beteiligt ist“, so PD Dr. Carsten Kötting. Die Clusterbildung ist für Ras von großem Vorteil. In der Gruppe können die Proteine ein Signal deutlicher, also mit weniger Fehlern, weitergegeben. Das SOS-Protein zum Beispiel überträgt ein Signal immer gleichzeitig auf zwei Ras-Moleküle. Liegt Ras in Doppelform (als Dimer) vor, ist dieser Schritt viel leichter. Das Verständnis für die räumliche Organisation von Ras ermöglicht neue Ansätze für die Medikamentenentwicklung. „Bislang wurden keine Medikamente gefunden, die direkt an Ras angreifen“, so Klaus Gerwert. „Ras gilt als undruggable. Die hier gefundene Ras-Ras-Kontaktfläche könnte ein neuer Ansatzpunkt sein, um doch Ras-Medikamente zu entwickeln.“

Projektförderung

Fördermittel für das Projekt stammen vom Protein Research Department der RUB, vom Land NRW im Rahmen des Centers for Vibrational Microscopy (CVM) und vom SFB 642 „GTP- und ATP-abhängige Membranprozesse“, dessen Sprecher Prof. Gerwert ist.

Titelaufnahme

J. Güldenhaupt, T. Rudack, P. Bachler, D. Mann, G. Triola, H. Waldmann, C. Kötting, K. Gerwert (2012): N-Ras forms dimers at POPC membranes, Biophysical Journal, doi: 10.1016/j.bpj.2012.08.043

Weitere Informationen

Prof Dr. Klaus Gerwert, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461

klaus.gerwert@bph.ruhr-uni-bochum.de

Angeklickt

Coverbild des Biophysical Journal
http://download.cell.com/images/journalimages/0006-3495/S0006349512X00201_covhighres.jpg

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau