Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Stau bitte langsam fahren!

14.10.2011
Verkehrskontrolle ohne Ampel: Lebewesen formen exakte geometrische Muster, wenn ihre Beweglichkeit von der lokalen Dichte abhängig ist. Mit diesem neuartigen Mechanismus erklärt ein internationales Forscherteam unter Marburger Beteiligung, wie es zur organischen Musterbildung kommt.

Die Wissenschaftler um den Physiker Professor Dr. Peter Lenz von der Philipps-Universität belegten die Gültigkeit ihres Konzepts experimentell, indem sie einen künstlichen Schaltkreis aus zwei genetischen Modulen konstruierten. Das Team veröffentlicht seine Ergebnisse in der aktuellen Ausgabe des Wissenschaftsmagazin "Science", die am Freitag, den 14. Oktober erschienen ist.


Ornament der Masse: Genetisch umprogrammierte E. coli Zellen bilden auf einem Nährmedium, auf denen sie sich frei bewegen und wachsen können, ein Streifenmuster aus, das sich aus alternierenden Regionen hoher und niedriger Zelldichte zusammensetzt. Dieses Muster wird durch die dichteabhängige Mobilität der Zellen verursacht, die sich nur in Regionen niedriger Zelldichte bewegen können.
(Abbildung: Chenli Liu, Xiongfei Fu et al., Science 334/2011, Seite 238)

„Räumliche Muster in der belebten Natur sind nicht nur schön anzusehen, wie die Streifen eines Zebras oder die Ornamente einer Muschelschale, sondern erfüllen auch wichtige organische Funktionen“, erklärt Lenz; ein berühmtes Beispiel liefert die molekulare Steuerung der Körpergliederung bei Insekten: „So treten bei den Embryonen der Fruchtfliege Drosophila Streifenmuster auf, die dadurch zustande kommen, dass bestimmte Gene in regelmäßigen Abständen angeschaltet werden, nicht aber in den dazwischen liegenden Zellen. Dieses Muster ist ein erstes Anzeichen für die Untergliederung des Larvenkörpers in ringförmige Segmente.“

Vor fast 50 Jahren kam der britische Mathematiker Alan Turing einer Erklärung solcher biotischer Musterbildungsprozesse einen großen Schritt näher: Um den Zellen eines Organismus’ unterschiedliche Signale zu vermitteln, so dass sie sich voneinander abweichend entwickeln, reichen Turing zufolge bereits zwei Substanzen aus, die miteinander interagieren, indem sie sich in ihrer Wirkung hemmen oder verstärken. Man spricht bei derartigen Stoffen von Morphogenen. „Dieser Mechanismus kann in der Tat viele der in der Natur auftretenden Muster erzeugen“, erläutert Lenz; „er hat aber den Nachteil, dass er nicht besonders robust gegenüber Fluktuationen ist.“

Die Autoren der aktuellen Veröffentlichung schlagen nun einen vollständig neuen Musterbildungs-Mechanismus vor. Dieser beruht darauf, dass die Beweglichkeit der Morphogene von ihrer lokalen Dichte abhängt, wie Lenz ausführt. „Genauer gesagt: falls sich in Regionen hoher Dichte die Morphogene nur sehr langsam, in Regionen niedriger Dichte hingegen schnell bewegen, so kann sich ein räumliches Dichtemuster herausbilden.“

Die Autoren bedienten sich moderner Methoden der Synthetischen Mikrobiologie, um zu demonstrieren, dass dieser Mechanismus in der Tat zur Musterbildung führen kann. Hierfür wurde das Bakterium Escherichia coli genetisch umprogrammiert: Die Wissenschaftler schleusten das Gen eines anderen Bakteriums ein, mit dessen Hilfe der Mikroorganismus die Zelldichte in der Umgebung chemisch messen kann. Dies geschieht mittels eines Botenstoffes (AHL), der nur produziert wird, falls die Zelldichte hoch ist. Außerdem modifizierten die Forscher das bereits vorhandene, genetische Programm für die Zellbeweglichkeit; die vorgenommenen Veränderungen bewirkten, dass sich E. coli bei hinreichend hoher AHL-Konzentration nicht mehr bewegt.

In der Summe weisen die modifizierten Bakterien also genau die geforderte, dichteabhängige Mobilität auf. Das Ergebnis: Die Zellen gruppieren sich tatsächlich in Gestalt eines Streifenmusters, wenn sie ein Nährmedium besiedeln, in dem sie wachsen und sich bewegen können. Die Streifen bestehen aus alternierenden Regionen hoher und niedriger Zelldichte. "Die theoretische Untersuchung dieses Prozesses zeigte, dass die Regionen hoher Dichte durch Aggregation der Zellen entstehen, die diese immobil machen", erklärt Lenz. Mithilfe dieses theoretischen Konzepts konnten die Autoren vorhersagen und experimentell bestätigen, wie sich das Muster manipulieren lässt, indem der Abstand der Streifen modifiziert wird.

"Diese Arbeit demonstriert somit insbesondere die neuartigen Möglichkeiten, die sich durch Anwendung der Synthetischen Mikrobiologie ergeben", fügt Lenz hinzu: "Durch gezielte Manipulationen lassen sich komplexe Effekte in lebenden Systemen genauer analysieren und mathematisch beschreiben."

Originalveröffentlichung: Chenli Liu, Xiongfei Fu et al.: Sequential establishment of stripe patterns in an expanding cell population, Science 334 (2011), Seite 238, DOI: 10.1126/science.1209042

Onlinezugang: http://www.sciencemag.org/content/334/6053/238.full.pdf

Weitere Informationen:
Ansprechpartner: Professor Dr. Peter Lenz,
Fachgebiet Komplexe Systeme
Tel.: 06421 28-24326
E-Mail: peter.lenz@physik.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de
http://www.uni-marburg.de/fb13/forschung/komplexe-systeme/gruppe-lenz/index_lenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops