Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Stau bitte langsam fahren!

14.10.2011
Verkehrskontrolle ohne Ampel: Lebewesen formen exakte geometrische Muster, wenn ihre Beweglichkeit von der lokalen Dichte abhängig ist. Mit diesem neuartigen Mechanismus erklärt ein internationales Forscherteam unter Marburger Beteiligung, wie es zur organischen Musterbildung kommt.

Die Wissenschaftler um den Physiker Professor Dr. Peter Lenz von der Philipps-Universität belegten die Gültigkeit ihres Konzepts experimentell, indem sie einen künstlichen Schaltkreis aus zwei genetischen Modulen konstruierten. Das Team veröffentlicht seine Ergebnisse in der aktuellen Ausgabe des Wissenschaftsmagazin "Science", die am Freitag, den 14. Oktober erschienen ist.


Ornament der Masse: Genetisch umprogrammierte E. coli Zellen bilden auf einem Nährmedium, auf denen sie sich frei bewegen und wachsen können, ein Streifenmuster aus, das sich aus alternierenden Regionen hoher und niedriger Zelldichte zusammensetzt. Dieses Muster wird durch die dichteabhängige Mobilität der Zellen verursacht, die sich nur in Regionen niedriger Zelldichte bewegen können.
(Abbildung: Chenli Liu, Xiongfei Fu et al., Science 334/2011, Seite 238)

„Räumliche Muster in der belebten Natur sind nicht nur schön anzusehen, wie die Streifen eines Zebras oder die Ornamente einer Muschelschale, sondern erfüllen auch wichtige organische Funktionen“, erklärt Lenz; ein berühmtes Beispiel liefert die molekulare Steuerung der Körpergliederung bei Insekten: „So treten bei den Embryonen der Fruchtfliege Drosophila Streifenmuster auf, die dadurch zustande kommen, dass bestimmte Gene in regelmäßigen Abständen angeschaltet werden, nicht aber in den dazwischen liegenden Zellen. Dieses Muster ist ein erstes Anzeichen für die Untergliederung des Larvenkörpers in ringförmige Segmente.“

Vor fast 50 Jahren kam der britische Mathematiker Alan Turing einer Erklärung solcher biotischer Musterbildungsprozesse einen großen Schritt näher: Um den Zellen eines Organismus’ unterschiedliche Signale zu vermitteln, so dass sie sich voneinander abweichend entwickeln, reichen Turing zufolge bereits zwei Substanzen aus, die miteinander interagieren, indem sie sich in ihrer Wirkung hemmen oder verstärken. Man spricht bei derartigen Stoffen von Morphogenen. „Dieser Mechanismus kann in der Tat viele der in der Natur auftretenden Muster erzeugen“, erläutert Lenz; „er hat aber den Nachteil, dass er nicht besonders robust gegenüber Fluktuationen ist.“

Die Autoren der aktuellen Veröffentlichung schlagen nun einen vollständig neuen Musterbildungs-Mechanismus vor. Dieser beruht darauf, dass die Beweglichkeit der Morphogene von ihrer lokalen Dichte abhängt, wie Lenz ausführt. „Genauer gesagt: falls sich in Regionen hoher Dichte die Morphogene nur sehr langsam, in Regionen niedriger Dichte hingegen schnell bewegen, so kann sich ein räumliches Dichtemuster herausbilden.“

Die Autoren bedienten sich moderner Methoden der Synthetischen Mikrobiologie, um zu demonstrieren, dass dieser Mechanismus in der Tat zur Musterbildung führen kann. Hierfür wurde das Bakterium Escherichia coli genetisch umprogrammiert: Die Wissenschaftler schleusten das Gen eines anderen Bakteriums ein, mit dessen Hilfe der Mikroorganismus die Zelldichte in der Umgebung chemisch messen kann. Dies geschieht mittels eines Botenstoffes (AHL), der nur produziert wird, falls die Zelldichte hoch ist. Außerdem modifizierten die Forscher das bereits vorhandene, genetische Programm für die Zellbeweglichkeit; die vorgenommenen Veränderungen bewirkten, dass sich E. coli bei hinreichend hoher AHL-Konzentration nicht mehr bewegt.

In der Summe weisen die modifizierten Bakterien also genau die geforderte, dichteabhängige Mobilität auf. Das Ergebnis: Die Zellen gruppieren sich tatsächlich in Gestalt eines Streifenmusters, wenn sie ein Nährmedium besiedeln, in dem sie wachsen und sich bewegen können. Die Streifen bestehen aus alternierenden Regionen hoher und niedriger Zelldichte. "Die theoretische Untersuchung dieses Prozesses zeigte, dass die Regionen hoher Dichte durch Aggregation der Zellen entstehen, die diese immobil machen", erklärt Lenz. Mithilfe dieses theoretischen Konzepts konnten die Autoren vorhersagen und experimentell bestätigen, wie sich das Muster manipulieren lässt, indem der Abstand der Streifen modifiziert wird.

"Diese Arbeit demonstriert somit insbesondere die neuartigen Möglichkeiten, die sich durch Anwendung der Synthetischen Mikrobiologie ergeben", fügt Lenz hinzu: "Durch gezielte Manipulationen lassen sich komplexe Effekte in lebenden Systemen genauer analysieren und mathematisch beschreiben."

Originalveröffentlichung: Chenli Liu, Xiongfei Fu et al.: Sequential establishment of stripe patterns in an expanding cell population, Science 334 (2011), Seite 238, DOI: 10.1126/science.1209042

Onlinezugang: http://www.sciencemag.org/content/334/6053/238.full.pdf

Weitere Informationen:
Ansprechpartner: Professor Dr. Peter Lenz,
Fachgebiet Komplexe Systeme
Tel.: 06421 28-24326
E-Mail: peter.lenz@physik.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de
http://www.uni-marburg.de/fb13/forschung/komplexe-systeme/gruppe-lenz/index_lenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics