Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Stau bitte langsam fahren!

14.10.2011
Verkehrskontrolle ohne Ampel: Lebewesen formen exakte geometrische Muster, wenn ihre Beweglichkeit von der lokalen Dichte abhängig ist. Mit diesem neuartigen Mechanismus erklärt ein internationales Forscherteam unter Marburger Beteiligung, wie es zur organischen Musterbildung kommt.

Die Wissenschaftler um den Physiker Professor Dr. Peter Lenz von der Philipps-Universität belegten die Gültigkeit ihres Konzepts experimentell, indem sie einen künstlichen Schaltkreis aus zwei genetischen Modulen konstruierten. Das Team veröffentlicht seine Ergebnisse in der aktuellen Ausgabe des Wissenschaftsmagazin "Science", die am Freitag, den 14. Oktober erschienen ist.


Ornament der Masse: Genetisch umprogrammierte E. coli Zellen bilden auf einem Nährmedium, auf denen sie sich frei bewegen und wachsen können, ein Streifenmuster aus, das sich aus alternierenden Regionen hoher und niedriger Zelldichte zusammensetzt. Dieses Muster wird durch die dichteabhängige Mobilität der Zellen verursacht, die sich nur in Regionen niedriger Zelldichte bewegen können.
(Abbildung: Chenli Liu, Xiongfei Fu et al., Science 334/2011, Seite 238)

„Räumliche Muster in der belebten Natur sind nicht nur schön anzusehen, wie die Streifen eines Zebras oder die Ornamente einer Muschelschale, sondern erfüllen auch wichtige organische Funktionen“, erklärt Lenz; ein berühmtes Beispiel liefert die molekulare Steuerung der Körpergliederung bei Insekten: „So treten bei den Embryonen der Fruchtfliege Drosophila Streifenmuster auf, die dadurch zustande kommen, dass bestimmte Gene in regelmäßigen Abständen angeschaltet werden, nicht aber in den dazwischen liegenden Zellen. Dieses Muster ist ein erstes Anzeichen für die Untergliederung des Larvenkörpers in ringförmige Segmente.“

Vor fast 50 Jahren kam der britische Mathematiker Alan Turing einer Erklärung solcher biotischer Musterbildungsprozesse einen großen Schritt näher: Um den Zellen eines Organismus’ unterschiedliche Signale zu vermitteln, so dass sie sich voneinander abweichend entwickeln, reichen Turing zufolge bereits zwei Substanzen aus, die miteinander interagieren, indem sie sich in ihrer Wirkung hemmen oder verstärken. Man spricht bei derartigen Stoffen von Morphogenen. „Dieser Mechanismus kann in der Tat viele der in der Natur auftretenden Muster erzeugen“, erläutert Lenz; „er hat aber den Nachteil, dass er nicht besonders robust gegenüber Fluktuationen ist.“

Die Autoren der aktuellen Veröffentlichung schlagen nun einen vollständig neuen Musterbildungs-Mechanismus vor. Dieser beruht darauf, dass die Beweglichkeit der Morphogene von ihrer lokalen Dichte abhängt, wie Lenz ausführt. „Genauer gesagt: falls sich in Regionen hoher Dichte die Morphogene nur sehr langsam, in Regionen niedriger Dichte hingegen schnell bewegen, so kann sich ein räumliches Dichtemuster herausbilden.“

Die Autoren bedienten sich moderner Methoden der Synthetischen Mikrobiologie, um zu demonstrieren, dass dieser Mechanismus in der Tat zur Musterbildung führen kann. Hierfür wurde das Bakterium Escherichia coli genetisch umprogrammiert: Die Wissenschaftler schleusten das Gen eines anderen Bakteriums ein, mit dessen Hilfe der Mikroorganismus die Zelldichte in der Umgebung chemisch messen kann. Dies geschieht mittels eines Botenstoffes (AHL), der nur produziert wird, falls die Zelldichte hoch ist. Außerdem modifizierten die Forscher das bereits vorhandene, genetische Programm für die Zellbeweglichkeit; die vorgenommenen Veränderungen bewirkten, dass sich E. coli bei hinreichend hoher AHL-Konzentration nicht mehr bewegt.

In der Summe weisen die modifizierten Bakterien also genau die geforderte, dichteabhängige Mobilität auf. Das Ergebnis: Die Zellen gruppieren sich tatsächlich in Gestalt eines Streifenmusters, wenn sie ein Nährmedium besiedeln, in dem sie wachsen und sich bewegen können. Die Streifen bestehen aus alternierenden Regionen hoher und niedriger Zelldichte. "Die theoretische Untersuchung dieses Prozesses zeigte, dass die Regionen hoher Dichte durch Aggregation der Zellen entstehen, die diese immobil machen", erklärt Lenz. Mithilfe dieses theoretischen Konzepts konnten die Autoren vorhersagen und experimentell bestätigen, wie sich das Muster manipulieren lässt, indem der Abstand der Streifen modifiziert wird.

"Diese Arbeit demonstriert somit insbesondere die neuartigen Möglichkeiten, die sich durch Anwendung der Synthetischen Mikrobiologie ergeben", fügt Lenz hinzu: "Durch gezielte Manipulationen lassen sich komplexe Effekte in lebenden Systemen genauer analysieren und mathematisch beschreiben."

Originalveröffentlichung: Chenli Liu, Xiongfei Fu et al.: Sequential establishment of stripe patterns in an expanding cell population, Science 334 (2011), Seite 238, DOI: 10.1126/science.1209042

Onlinezugang: http://www.sciencemag.org/content/334/6053/238.full.pdf

Weitere Informationen:
Ansprechpartner: Professor Dr. Peter Lenz,
Fachgebiet Komplexe Systeme
Tel.: 06421 28-24326
E-Mail: peter.lenz@physik.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de
http://www.uni-marburg.de/fb13/forschung/komplexe-systeme/gruppe-lenz/index_lenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften