Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Start von der Pole-Position - Wie die Abschrift eines Gens beginnt

09.10.2009
Alle lebenden Zellen tragen die fadenförmige Erbsubstanz DNA, die aus Tausenden von Genen besteht. Seit Längerem ist bekannt, wie Gene kopiert werden und dabei Bauanleitungen für Proteine, die Funktionsträger der Zelle, entstehen.

Unklar war aber, wie die winzige Kopiermaschine RNA-Polymerase II den Beginn eines Gens findet. Ein Team um Professor Patrick Cramer, Direktor des Genzentrums der LMU, zeigt nun in einer bahnbrechenden Arbeit, wie die Polymerase den Kopiervorgang am Beginn eines Gens mithilfe des sogenannten Faktors B startet.

"Aus unserer Struktur-Funktions-Analyse ergibt sich der Ablauf der sehr komplizierten Transkriptions-Initiation", berichtet der Biochemiker. "Die Regulation dieses Ablaufs bestimmt, wann welche Gene ausgeprägt werden." Aufbauend auf diesen Ergebnissen können nun die molekularen Schalter untersucht werden, die Gene gezielt aktivieren - und so Entwicklung und Erhalt eines Organismus steuern. (Nature online, 9. Oktober 2009)

"Die DNA ist nur ein Speichermedium und für sich genommen eher langweilig", sagt Cramer. "Die Gene sind eigentlich stumm. Sie müssen zum Sprechen gebracht werden." Das ermöglicht ein Kopiervorgang, die Transkription durch RNA-Polymerase II, kurz Pol II. Dieser Enzymkomplex kopiert Gene und übersetzt sie in RNA, eine dem Erbmolekül verwandte Nukleinsäure. Dabei entsteht der Botenstoff mRNA, der die genetische Information aus dem Zellkern trägt, sodass sie in das entsprechende Protein umgesetzt werden kann.

Wie Pol II ein Gen kopiert, ist seit Längerem bekannt. Unklar war aber, wie das Enzym den Beginn eines Gens findet und die Startstelle der Transkription festlegt. Dabei konnte bereits Mitte der 90er Jahre gezeigt werden, wie der Beginn von Genen in der Zelle markiert wird. Dazu bindet der Faktor TBP an die sogenannte "TATA-Box", eine definierte Stelle in der DNA vor der Startstelle der Transkription. Der Transkriptions-Faktor B bringt nun die Polymerase an die Startstelle, indem er eine Brücke zwischen TBP und Polymerase baut.

"Wie diese Brücke aussieht und wie der Faktor B die Transkription am rechten Ort beginnen lässt, blieb unbekannt", berichtet Cramer. "Wir konnten nun aber aufklären, wie die dreidimensionale molekulare Struktur der Polymerase im Komplex mit B aussieht." Methodische Grundlage der Studien ist die extrem aufwändige Röntgenstrukturanalyse. Dabei müssen große Mengen des gesuchten Moleküls oder Molekülkomplexes als Kristall gezüchtet werden. Dessen regelmäßige Gitterstruktur kann intensive Röntgenstrahlung in ein charakteristisches Muster beugen - was rechnergestützt die molekulare Struktur des Moleküls oder des Komplexes ableiten lässt. Diese Methode wurde auch bei den Arbeiten zur Aufklärung der Proteinfabriken eingesetzt, die diese Woche mit dem Nobelpreis für Chemie ausgezeichnet wurden.

Cramer und seinen Mitarbeitern gelang es immer wieder, große und instabile Molekülkomplexe zu präparieren und durch Kristallisation erstmals einer Strukturanalyse zugänglich zu machen. Auch die dreidimensionale atomare Struktur der Pol II in verschiedenen Aktivitäts-Zuständen gehörte dazu. "Für die Transkription in lebenden Zellen sind neben der Pol II noch Dutzende weiterer Faktoren mit spezifischer Funktion nötig", berichtet Cramer. "Sie binden meist nur kurz und schwach an das Enzym, was den Komplex instabil macht und eine Strukturuntersuchung meist vereitelt." Durch einen Trick gelang es dem Team aber in diesem Fall, den Komplex zusammenzuhalten und seine Struktur zu bestimmen.

Ausgehend von der dreidimensionalen Struktur der Polymerase im Komplex mit dem Brückenfaktor B konnten die Forscher modellieren, wie das Enzym an den Beginn eines Gens gebracht wird und wie es die Startstelle der Transkription findet. In einer sehr fruchtbaren Kollaboration mit der Arbeitsgruppe um Professor Michael Thomm an der Universität Regensburg konnten die Forscher dann zeigen, wie der Prozess abläuft. Ein Teil des Faktors B hilft bei der Öffnung der DNA-Doppelhelix, was die Startstelle zugänglich macht. Danach wird die geöffnete DNA durch den Polymerase-B-Komplex gescannt, um die Startstelle zu finden und die Transkription zu beginnen. Für das Scannen ist ein separater Teil des Faktors B nötig. Dieser liest auf der Suche nach dem Start-Signal den vorbeilaufenden DNA-Faden wie ein Lesekopf in einem Tonbandgerät.

Diese Ergebnisse fügen sich zu einem Modell für den Ablauf der sehr komplizierten Transkriptions-Initiation in sechs Schritten zusammen. Sie liefern aber auch denkbare Szenarien zur Funktion molekularer Schalter, die Gene bei Bedarf aktivieren. "Solche Genschalter liegen der Entwicklung und dem Erhalt von Organismen zugrunde", sagt Cramer. "Nach diesem Durchbruch wird man sie in den nächsten Jahren gezielt erforschen können." Gerade die Aussicht, eines Tages zu verstehen, wie Gene angeschaltet werden, wenn Sie im Organismus gebraucht werden, macht die Arbeit zu einem Meilenstein in einem aktuellen Forschungsfeld. (suwe)

Publikation:
"RNA polymerase II-TFIIB structure and mechanism of transcription initiation",
Dirk Kostrewa, Mirijam E. Zeller, Karim-Jean Armache, Martin Seizl, Kristin Leike, Michael Thomm and Patrick Cramer
Nature online, 9. Oktober 2009
DOI: 10.1038/nature08548
Ansprechpartner:
Professor Dr. Patrick Cramer
Genzentrum der Ludwig-Maximilians-Universität München
Center for Integrated Protein Science Munich CIPSM
Department für Chemie und Biochemie
Fakultät für Chemie und Pharmazie
Tel.: 089 / 2180 - 76965
Fax: 089 / 2180 - 76999
E-Mail: cramer@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics