Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017

Hämatopoetische Stammzellen können sich in einem netzartigen Blutgefäß anheften und auswandern

Bei der Behandlung von Leukämie und Krebserkrankungen werden zunächst Blutstammzellen des erkrankten Knochenmarks abgetötet, bevor diese durch die Transplantation gesunder Stammzellen ersetzt werden. Die neuen Stammzellen werden über einen Venenkatheter in den Blutkreislauf des Empfängers übertragen und finden über die Blutbahn selbst den Weg ins Knochenmark. Es ist jedoch nicht genau bekannt, wo und wie diese hämatopoetischen Stammzellen geeignete Stellen in den Knochenmarksgefäßen finden, um aus der Blutbahn auszuwandern. Forscher vom Max-Planck-Institut für molekulare Biomedizin in Münster haben nun mit einem hochmodernen Lasermikroskop erstmals live die Dynamik des Blutflusses in intakten Knochenmarksgefäßen beobachtet und vermessen. Damit lassen sich die Strömungsbedingungen identifizieren, unter denen Blutstammzellen die Gefäße verlassen und sich ihre Nische im Knochenmark suchen können.


Blutgefäße im Knochenmark haben je nach Typ unterschiedliche Funktionen. Im dichten Netzwerk finden Blutstammzellen die optimalen Bedingungen, um in das benachbarte Gewebe zu wandern.

© MPI f. molekulare Biomedizin

Blutgefäße im Knochenmark haben je nach Typ unterschiedliche Funktionen. Im dichten Netzwerk finden Blutstammzellen die optimalen Bedingungen, um in das benachbarte Gewebe zu wandern.
Bild vergrößern


Blutgefäße im Knochenmark haben je nach Typ unterschiedliche Funktionen. Im dichten Netzwerk finden Blutstammzellen die ... [mehr]


© MPI f. molekulare Biomedizin

Knochenmark enthält viele Blutgefäße, es ist folglich gut durchblutet und mit Sauerstoff versorgt. Wissenschaftler vermuten jedoch, dass sich hämatopoetische Stammzellen – also die Blutstammzellen – nur auf Dauer ansiedeln können, wenn der Sauerstoffdruck in der Nische im Knochenmark gering ist. Um das Netzwerk der Blutgefäße im Knochenmark und den Blutfluss in Detail und naturgetreu zu untersuchen, haben die Max-Planck-Wissenschaftler eine Mikroskopiemethode entwickelt, mit der sie den Blutfluss in intakten Blutgefäßen live beobachten können. „Mit unserem Multiphotonen-Mikroskop können wir nicht nur tiefe Bereiche im intakten lebenden Gewebe schonend beobachten, wir können auch die Faserstruktur des Knochenkollagens ohne Färbung sichtbar machen. Aber erst nach einer technischen Aufrüstung unseres Lasermikroskops ist es uns gelungen, schnelle Serienbilder vom Blutfluss aufzunehmen und zu beobachten, wie die Blutkörperchen durch die Gefäße flitzen. Dadurch entstand quasi eine live-Animation des Blutflusses in den unterschiedlichen Gefäßtypen“, erklärt Gabriele Bixel, Erstautorin der Studie.

Da der Oberschenkelknochen relativ dick ist, konzentrierten sich Bixel und ihre Kollegen stattdessen auf den Schädelknochen. „Die Schädeldecke von Mäusen ist dünn, und die Blutgefäße darin sind verhältnismäßig leicht zugänglich“, sagt Bixel. „Das sind optimale Voraussetzungen, um durch den Knochen hindurch die darunter verborgenen Blutgefäße in ihren Knochenmarkshöhlen zu untersuchen. Zudem lässt sich das dynamische Flussverhalten des Blutes durch die verschiedenen Typen der Knochenmarksgefäße mit einem Kontrastfarbstoff sehr gut sichtbar machen.“

Geringe Strömung in Blutgefäßgeflecht

Zunächst konnten die Wissenschaftler mithilfe von fluoreszierenden Antikörpern zeigen, dass Blutgefäße im Knochenmark der Schädeldecke ähnlich aussehen wie im Oberschenkelknochen. „Wir haben zu unserer Überraschung beobachtet, dass ein bestimmter Typ Blutgefäß im Knochenmark ein Geflecht bildet, in dem der Blutfluss heterogen und in einigen Gefäßen tatsächlich sehr gering ist.“ Und wo wenig fließt, entstehen auch wenig strömungsbedingte Scherkräfte: „Durch die geringe Strömungsgeschwindigkeit können sich heranrollende hämatopoetische Stammzellen überhaupt erst an die Gefäßwand anheften, um nachfolgend in das Knochenmark auszuwandern“, so Bixel. Die live-Aufnahmen dokumentieren, wie sich die hämatopoetischen Stammzellen innerhalb von Stunden nach der Transplantation an die Gefäßinnenwand im Knochenmark anheften und anfangen, in das umliegende Gewebe – ihre Nische – zu migrieren. Nach circa 24 Stunden sind die meisten Stammzellen durch die Gefäßwand geschlüpft und befinden sich überwiegend stationär im Knochenmark.

Weitgehend unklar ist allerdings noch, ob allein die Stammzelle die Auswanderungsstelle bestimmt oder ob die Zellen der Gefäßinnenwand auch eine aktive Rolle dabei spielen. Auch was die Stammzellen nach der Einwanderung in ihre Nische genau machen, wissen die Forscher noch nicht. Klar ist allerdings, dass die neue Mikroskopiemethode die Beantwortung dieser Fragen voranbringen wird.


Ansprechpartner

Dr. Gabriele Bixel
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-430
E-Mail: mgbixel@mpi-muenster.mpg.de
 
Prof. Dr. Ralf Adams
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-400
Fax: +49 251 70365-499
E-Mail: ralf.adams@mpi-muenster.mpg.de
 
Dr. Jeanine Müller-Keuker
Presse und Öffentlichkeit
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-325
E-Mail: presse@mpi-muenster.mpg.de
 

Originalpublikation
M. Gabriele Bixel, Anjali P. Kusumbe, Saravana K. Ramasamy, Kishor K. Sivaraj, Stefan Butz, Dietmar Vestweber, Ralf. H. Adams

Flow dynamics and HSPC homing in bone marrow microvessels.

Cell Reports, online first; 14 February, 2017 (DOI: 10.1016/j.celrep.2017.01.042)

Dr. Gabriele Bixel | Max-Planck-Institut für molekulare Biomedizin, Münster
Weitere Informationen:
https://www.mpg.de/11050977/haematopoetische-stammzellen-knochenmark

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics