Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017

Hämatopoetische Stammzellen können sich in einem netzartigen Blutgefäß anheften und auswandern

Bei der Behandlung von Leukämie und Krebserkrankungen werden zunächst Blutstammzellen des erkrankten Knochenmarks abgetötet, bevor diese durch die Transplantation gesunder Stammzellen ersetzt werden. Die neuen Stammzellen werden über einen Venenkatheter in den Blutkreislauf des Empfängers übertragen und finden über die Blutbahn selbst den Weg ins Knochenmark. Es ist jedoch nicht genau bekannt, wo und wie diese hämatopoetischen Stammzellen geeignete Stellen in den Knochenmarksgefäßen finden, um aus der Blutbahn auszuwandern. Forscher vom Max-Planck-Institut für molekulare Biomedizin in Münster haben nun mit einem hochmodernen Lasermikroskop erstmals live die Dynamik des Blutflusses in intakten Knochenmarksgefäßen beobachtet und vermessen. Damit lassen sich die Strömungsbedingungen identifizieren, unter denen Blutstammzellen die Gefäße verlassen und sich ihre Nische im Knochenmark suchen können.


Blutgefäße im Knochenmark haben je nach Typ unterschiedliche Funktionen. Im dichten Netzwerk finden Blutstammzellen die optimalen Bedingungen, um in das benachbarte Gewebe zu wandern.

© MPI f. molekulare Biomedizin

Blutgefäße im Knochenmark haben je nach Typ unterschiedliche Funktionen. Im dichten Netzwerk finden Blutstammzellen die optimalen Bedingungen, um in das benachbarte Gewebe zu wandern.
Bild vergrößern


Blutgefäße im Knochenmark haben je nach Typ unterschiedliche Funktionen. Im dichten Netzwerk finden Blutstammzellen die ... [mehr]


© MPI f. molekulare Biomedizin

Knochenmark enthält viele Blutgefäße, es ist folglich gut durchblutet und mit Sauerstoff versorgt. Wissenschaftler vermuten jedoch, dass sich hämatopoetische Stammzellen – also die Blutstammzellen – nur auf Dauer ansiedeln können, wenn der Sauerstoffdruck in der Nische im Knochenmark gering ist. Um das Netzwerk der Blutgefäße im Knochenmark und den Blutfluss in Detail und naturgetreu zu untersuchen, haben die Max-Planck-Wissenschaftler eine Mikroskopiemethode entwickelt, mit der sie den Blutfluss in intakten Blutgefäßen live beobachten können. „Mit unserem Multiphotonen-Mikroskop können wir nicht nur tiefe Bereiche im intakten lebenden Gewebe schonend beobachten, wir können auch die Faserstruktur des Knochenkollagens ohne Färbung sichtbar machen. Aber erst nach einer technischen Aufrüstung unseres Lasermikroskops ist es uns gelungen, schnelle Serienbilder vom Blutfluss aufzunehmen und zu beobachten, wie die Blutkörperchen durch die Gefäße flitzen. Dadurch entstand quasi eine live-Animation des Blutflusses in den unterschiedlichen Gefäßtypen“, erklärt Gabriele Bixel, Erstautorin der Studie.

Da der Oberschenkelknochen relativ dick ist, konzentrierten sich Bixel und ihre Kollegen stattdessen auf den Schädelknochen. „Die Schädeldecke von Mäusen ist dünn, und die Blutgefäße darin sind verhältnismäßig leicht zugänglich“, sagt Bixel. „Das sind optimale Voraussetzungen, um durch den Knochen hindurch die darunter verborgenen Blutgefäße in ihren Knochenmarkshöhlen zu untersuchen. Zudem lässt sich das dynamische Flussverhalten des Blutes durch die verschiedenen Typen der Knochenmarksgefäße mit einem Kontrastfarbstoff sehr gut sichtbar machen.“

Geringe Strömung in Blutgefäßgeflecht

Zunächst konnten die Wissenschaftler mithilfe von fluoreszierenden Antikörpern zeigen, dass Blutgefäße im Knochenmark der Schädeldecke ähnlich aussehen wie im Oberschenkelknochen. „Wir haben zu unserer Überraschung beobachtet, dass ein bestimmter Typ Blutgefäß im Knochenmark ein Geflecht bildet, in dem der Blutfluss heterogen und in einigen Gefäßen tatsächlich sehr gering ist.“ Und wo wenig fließt, entstehen auch wenig strömungsbedingte Scherkräfte: „Durch die geringe Strömungsgeschwindigkeit können sich heranrollende hämatopoetische Stammzellen überhaupt erst an die Gefäßwand anheften, um nachfolgend in das Knochenmark auszuwandern“, so Bixel. Die live-Aufnahmen dokumentieren, wie sich die hämatopoetischen Stammzellen innerhalb von Stunden nach der Transplantation an die Gefäßinnenwand im Knochenmark anheften und anfangen, in das umliegende Gewebe – ihre Nische – zu migrieren. Nach circa 24 Stunden sind die meisten Stammzellen durch die Gefäßwand geschlüpft und befinden sich überwiegend stationär im Knochenmark.

Weitgehend unklar ist allerdings noch, ob allein die Stammzelle die Auswanderungsstelle bestimmt oder ob die Zellen der Gefäßinnenwand auch eine aktive Rolle dabei spielen. Auch was die Stammzellen nach der Einwanderung in ihre Nische genau machen, wissen die Forscher noch nicht. Klar ist allerdings, dass die neue Mikroskopiemethode die Beantwortung dieser Fragen voranbringen wird.


Ansprechpartner

Dr. Gabriele Bixel
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-430
E-Mail: mgbixel@mpi-muenster.mpg.de
 
Prof. Dr. Ralf Adams
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-400
Fax: +49 251 70365-499
E-Mail: ralf.adams@mpi-muenster.mpg.de
 
Dr. Jeanine Müller-Keuker
Presse und Öffentlichkeit
Max-Planck-Institut für molekulare Biomedizin, Münster
Telefon: +49 251 70365-325
E-Mail: presse@mpi-muenster.mpg.de
 

Originalpublikation
M. Gabriele Bixel, Anjali P. Kusumbe, Saravana K. Ramasamy, Kishor K. Sivaraj, Stefan Butz, Dietmar Vestweber, Ralf. H. Adams

Flow dynamics and HSPC homing in bone marrow microvessels.

Cell Reports, online first; 14 February, 2017 (DOI: 10.1016/j.celrep.2017.01.042)

Dr. Gabriele Bixel | Max-Planck-Institut für molekulare Biomedizin, Münster
Weitere Informationen:
https://www.mpg.de/11050977/haematopoetische-stammzellen-knochenmark

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten