Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen aus dem Fruchtwasser

16.11.2010
Umprogrammierte Zellen aus dem Fruchtwasser können alle Zelltypen des Körpers hervorbringen

Auf Stammzellen ruhen große Hoffnungen: Eine Vielzahl von Erkrankungen könnte eines Tages damit behandelt werden. Bislang werden sie vor allem aus Embryonen gewonnen, was jedoch ethische Probleme mit sich bringt. Wissenschaftlern des Max-Planck-Instituts für molekulare Genetik in Berlin ist es nun gelungen, Zellen aus dem Fruchtwasser in Stammzellen umzuwandeln. Diese Fruchtwasser-Stammzellen sind zwar kaum von embryonalen Stammzellen zu unterscheiden, "erinnern" sich aber an den ursprünglichen Zelltyp, aus dem sie entstanden sind. (PLoS One, 29. Oktober 2010)


Humane Fruchtwasserzellen vor der Reprogrammierung (links) zu Fruchtwasser-iPS-Zellen (zweites Bild von links) sind von embryonalen Stammzellen äußerlich nicht zu unterscheiden. Fruchtwasser-iPS-Zellen produzieren OCT4 (grün), einen der wichtigsten Markerproteine für Stammzellen. Ausgehend von diesem embryonalen Stammzellstadium können die Fruchtwasser-iPS-Zellen unter anderem leberzellähnliche Zellen bilden (rechts). Sie produzieren das Plasmaprotein Alpha-Fetoprotein (rot). Bild: Max-Planck-Institut für molekulare Genetik, Berllin

Die besonderen Fähigkeiten der embryonalen Stammzellen können heute in einer Vielzahl von bereits "ausgewachsenen" Zellen (z.B. Haut- und Haarzellen) genutzt werden. Dafür werden diese Zellen reprogrammiert und in so genannte induzierte pluripotente Stammzellen (iPS) umgewandelt. Diese besitzen dann wieder die typischen Stammzelleigenschaften: Sie können jede Zellart des menschlichen Körpers bilden (Pluripotenz) sowie sich unendlich vermehren.

Stammzellen mit Gedächtnis

Die Wissenschaftler konnten zeigen, dass die Fruchtwasser-iPS-Zellen verschiedene Zelltypen des menschlichen Körpers bilden können. Darüber hinaus haben sie entdeckt, dass induzierte pluripotente Stammzellen sich an den Ursprungszelltyp erinnern können, aus dem sie hervorgegangen sind. Bei der Reprogrammierung der Zellen werden offenbar verschiedene Gene zusätzlich angeschaltet oder bleiben aktiv, die die Entwicklung der Stammzellen kontrollieren. Dies bestätigt andere, aktuelle Forschungsergebnisse, wonach iPS-Zellen aus verschiedenen Geweben vorrangig den gleichen Entwicklungsweg nehmen, den sie bereits vor der Reprogrammierung eingeschlagen haben. "Im Moment wissen wir noch nicht, ob sich dieses Stammzellgedächtnis auf mögliche medizinische Behandlungen auswirkt und welche Art Stammzellen für eine Therapie am besten geeignet ist", sagt Katharina Wolfrum vom Max-Planck-Institut für molekulare Genetik.

Fruchtwasserzellen haben gegenüber anderen Zelltypen verschiedene Vorteile. Zum einen werden Fruchtwasserzellen routinemäßig bei vorgeburtlichen Untersuchungen gewonnen, um mögliche Erkrankungen früh zu entdecken. Dabei werden meist mehr Zellen isoliert, als tatsächlich benötigt werden. Zum anderen enthält das Fruchtwasser eine Mischung verschiedener Zellarten des ungeborenen Kindes, darunter auch stammzellähnliche Zellen. Da sie nicht sehr alt sind, sammeln sich weniger umweltbedingte Mutationen an, was sie genetisch stabiler macht. "Möglicherweise können solche Zellen aus dem Fruchtwasser deshalb schneller und einfacher reprogrammiert werden, als andere Zelltypen. Dies macht Fruchtwasser-iPS-Zellen zu einer interessanten Ergänzung zu embryonalen Stammzellen", erklärt James Adjaye vom Berliner Max-Planck-Institut.

Darüber hinaus könnten Fruchtwasserzellen bereits vor der Geburt eines Kindes zur zellulären Reprogrammierung entnommen und während der Schwangerschaft entsprechend ihres späteren Verwendungszwecks vorbereitet werden. "Auf diese Weise könnte schon vor der Geburt getestet werden, welche Medikamente bei einem Baby wirken und ob es sie verträgt. Außerdem könnten kranke Neugeborene mit körpereigenen Zellen behandelt werden", sagt Adjaye.

Originalveröffentlichung:

The LARGE Principle of Cellular Reprogramming: Lost, Acquired and Retained Gene Expression in Foreskin and Amniotic Fluid-Derived Human iPS Cells
Katharina Wolfrum, Ying Wang, Alessandro Prigione, Karl Sperling, Hans Lehrach, James Adjaye

PLoS One 2010, 5: e13703 (doi:10.1371/journal.pone.0013703)

Weitere Informationen erhalten Sie von:

Dr. James Adjaye
Max-Planck-Institut für molekulare Genetik, Berlin
Tel.: +49 30 8413-1203
E-Mail: adjaye@molgen.mpg.de
Dr. Patricia Marquardt, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Genetik, Berlin
Tel.: +49 30 8413-1716
E-Mail: patricia.marquardt@molgen.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie