Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabile Wahrnehmung im erwachsenen Gehirn

10.06.2016

Das erwachsene Gehirn hat gelernt, ein Bild der Umwelt aus Informationen der Sinnesorgane zu berechnen. Verändern sich die Eingangssignale, kann sich auch das erwachsene Gehirn anpassen. Ist die Störung behoben, kehrt es, im Idealfall, zu seinem ursprünglichen Zustand zurück. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten in Mäusen zeigen, dass diese Eigenschaft auf der Fähigkeit einzelner Nervenzellen beruht: Einzelne Zellen sind in der Lage sich stark auf Veränderungen einzustellen und auch wieder ihren Ausgangszustand einzunehmen. Dies könnte erklären, warum das erwachsene Gehirn trotz ständiger Veränderungen nicht kontinuierlich alles neu erlernen muss

Alles, was wir über unsere Umwelt wissen, basiert auf Berechnungen unseres Gehirns. Während das kindliche Gehirn die Regeln der Umwelt erst noch lernen muss, weiß das erwachsene Gehirn, was es erwarten kann, und verarbeitet Umweltreize weitgehend stabil.


Aktive Nervenzellen der visuellen Großhirnrinde der Maus bei veränderten Sinneseindrücken. Weitere Informationen siehe www.neuro.mpg.de

(c) MPI für Neurobiologie / Rose

Doch auch das erwachsene Gehirn ist zeit seines Lebens in der Lage, auf Veränderungen zu reagieren, neue Erinnerungen zu bilden und zu lernen – es ist "plastisch". Forschungsergebnisse der letzten Jahre haben gezeigt, dass Veränderungen in den Nervenzellverbindungen die Grundlage dieser Plastizität sind.

Wie kann das Gehirn seine Verbindungen jedoch kontinuierlich verändern und Neues lernen, ohne zum Beispiel die bestehende, stabile Berechnung der Umwelt zu gefährden? Dieser Frage nach dem Zusammenspiel von Plastizität und Stabilität sind nun die Martinsrieder Neurobiologen aus der Abteilung von Tobias Bonhoeffer auf den Grund gegangen.

Die Wissenschaftler haben untersucht, wie stabil die Verarbeitung von Sinneseindrücken im visuellen Cortex der Maus ist. Seit rund 50 Jahren ist bekannt, dass bei dem zeitweisen Verschluss eines Auges der für dieses Auge zuständige Gehirnbereich zunehmend Signale aus dem noch offenen Auge verarbeitet. Eine Erkenntnis, die im Verwenden von Augenpflastern bei schielenden Kindern eine Anwendung findet.

"Dank neuer genetischer Farbstoffe ist es seit kurzem möglich, die Aktivitätssignale einzelner Nervenzellen über lange Zeiträume hinweg zuverlässig zu beobachten", berichtet Tobias Rose, der Erstautor der Studie. "Mit ein paar weiteren Verbesserungen konnten wir nun erstmals zeigen, was im Gehirn bei diesen Veränderungen passiert."

Durch das Mikroskop konnten die Wissenschaftler beobachten, dass rund zwei Drittel der Nervenzellen Signale aus dem anderen, offenen Auge übernehmen. "Das wirklich Spannende war jedoch, dass diese Zellen wieder zu ihrer Ursprungsaktivität zurückkehrten, sobald sie wieder Informationen von "ihrem" Auge erhielten", berichtet Tobias Rose.

Auch bei Wiederholung des Experiments veränderten sich genau dieselben Zellen. Aufgrund der großflächigen Veränderungen in den für die beiden Augen zuständigen Hirnbereichen hatten die Wissenschaftler eher vermutet, dass der Zellverband die erneut eintreffenden Informationen durch neue Verbindungen und das Rekrutieren von neuen Zellen kompensiert. "Es ist fast so, als könnten sich die einzelnen Zellen daran erinnern, wo sie welche Verbindungen vor dem Augenverschluss hatten, um diese dann wieder zu rekonstruieren", so Rose.

Die Ergebnisse legen nahe, dass Nervenzellen, die auf Veränderungen reagieren, einzelne stabile Verbindungen haben, die ihnen eine Rückkehr in ihren ursprünglichen Zustand erlauben. Dies würde es dem erwachsenen Gehirn erlauben, sich an veränderte Umweltbedingungen anzupassen, ohne dass sich die Grundverdrahtung komplett verändert. "Solche "Rückgratsynapsen" wurden vor einiger Zeit in theoretischen Studien postuliert", sagt Tobias Bonhoeffer.

"Sie konkret nachzuweisen, wird nun die nächste Herausforderung sein." Doch dies ist nicht die einzige Aufgabe, die vor den Forschern liegt: Ein Drittel der Zellen veränderte sich entweder gar nicht, oder verhielt sich im Widerspruch zu klassischen Theorien. "Wir wissen noch nicht genau warum sich diese Zellen so verhalten, aber wir haben schon Ideen, die wir jetzt noch testen müssen", freut sich Tobias Bonhoeffer auf die weitere Forschung.

ORIGINALVERÖFFENTLICHUNG
Tobias Rose, Juliane Jaepel, Mark Hübener, Tobias Bonhoeffer
Cell-specific restoration of stimulus preference after monocular deprivation in visual cortex
Science, 10. Juni 2016

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Tobias Bonhoeffer
Abteilung "Synapsen – Schaltkreise – Plastizität"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3751
Email: office.bonhoeffer@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/bonhoeffer/de - Webseite der Abteilung von Tobias Bonhoeffer

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Berichte zu: Gehirn Max-Planck-Institut Nervenzellen Neurobiologie Zellen visual cortex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics