Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Squeezing Out CO2

15.02.2013
Post-combustion capture: metal-organic framework releases stored carbon dioxide in sunlight

In order to reduce the carbon dioxide output from coal power plants, CO2 could be removed from their exhaust (post-combustion capture) and stored or, if possible, used as a carbon source for chemical syntheses.

Previous approaches to this have suffered from the fact that they require too much energy. In the journal Angewandte Chemie, Australian scientists have now introduced a new metal–organic framework compound that absorbs CO2 and then releases it upon exposure to sunlight.

Current techniques for the removal of CO2 from coal power plant exhausts by using liquid amines consume vast amounts of energy—sometimes up to 30 % of the energy produced by the plant. Most of the energy consumed in these processes is used to release the CO2 from the absorbent by raising the temperature or applying a vacuum.

A team headed by Richelle Lyndon and Matthew R. Hill is focusing on the use of concentrated sunlight as an alternative energy source for the release of CO2. The Australian researchers hope to achieve this by using metal–organic frameworks (MOFs) to absorb the CO2. MOFs are crystals constructed like a scaffold with pores that can hold guest molecules.

The “joints” of the framework consist of metal ions or clusters; the “struts” are organic molecules. Clever selection of the individual components allows the size and chemical properties of the pores to be tailored for specific applications. In this case, they are arranged so that CO2 can be stored in the pores.

The team from the Commonwealth Scientific and Industrial Research Organization (CSIRO) and Monash University (Australia) chose to use two different organic molecules for the vertical and horizontal struts. However, the molecules have one thing in common: irradiation with UV light causes them to alter their spatial structure. The molecules are securely fastened into the framework, which results in strain that limits the molecules to moving rapidly back and forth. Because of this, only small, limited regions of the framework move at any one time, and stop the entire structure collapsing.

The oscillating structural changes reduce the attractive forces between the surface of the pores and the absorbed CO2. A majority of the CO2 is squeezed out of the framework like water from a wrung-out sponge.

This process works best with UV light, but also works with concentrated natural sunlight. These light-reactive metal–organic frameworks could thus be an interesting approach for the energy-efficient removal of CO2 from combustion gases. Further investigations are needed to demonstrate how this separation works with real exhaust gases.

About the Author
Dr Matthew Hill is a senior research scientist with the CSIRO, Australia’s national laboratories. As an inorganic materials chemist he specialises in the construction of materials for clean and renewable energy applications. He is the recipient of the 2012 Eureka Prize for Emerging Leadership in Science.

Author: Matthew R. Hill, CSIRO Division of Materials Science and Engineering, Clayton (Australia), http://www.csiro.au/matthewhill

Title: Dynamic Photo-Switching in Metal–Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201206359

Matthew R. Hill | GDCh
Further information:
http://pressroom.angewandte.org
http://www.csiro.au/matthewhill

More articles from Life Sciences:

nachricht Discovery reveals how bacteria distinguish harmful vs. helpful viruses
01.09.2014 | Rockefeller University

nachricht Memory in silent neurons
01.09.2014 | Université de Genève

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachwelt trifft sich erstmals zu renommierter Audio-Konferenz in Erlangen

01.09.2014 | Veranstaltungen

Tagung „Brandschutz im Tank- und Gefahrgutlager“ am 03. November 2014

29.08.2014 | Veranstaltungen

Experten der modernen Optikfertigung treffen sich am 23./24. September in Wetzlar

29.08.2014 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fingerabdruck für Frachtstücke

01.09.2014 | Verkehr Logistik

Simulationen für bessere transparente Oxidschichten

01.09.2014 | Materialwissenschaften

Ein Label für mehr Transparenz

01.09.2014 | Wirtschaft Finanzen