Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Squeezing Out CO2

15.02.2013
Post-combustion capture: metal-organic framework releases stored carbon dioxide in sunlight

In order to reduce the carbon dioxide output from coal power plants, CO2 could be removed from their exhaust (post-combustion capture) and stored or, if possible, used as a carbon source for chemical syntheses.

Previous approaches to this have suffered from the fact that they require too much energy. In the journal Angewandte Chemie, Australian scientists have now introduced a new metal–organic framework compound that absorbs CO2 and then releases it upon exposure to sunlight.

Current techniques for the removal of CO2 from coal power plant exhausts by using liquid amines consume vast amounts of energy—sometimes up to 30 % of the energy produced by the plant. Most of the energy consumed in these processes is used to release the CO2 from the absorbent by raising the temperature or applying a vacuum.

A team headed by Richelle Lyndon and Matthew R. Hill is focusing on the use of concentrated sunlight as an alternative energy source for the release of CO2. The Australian researchers hope to achieve this by using metal–organic frameworks (MOFs) to absorb the CO2. MOFs are crystals constructed like a scaffold with pores that can hold guest molecules.

The “joints” of the framework consist of metal ions or clusters; the “struts” are organic molecules. Clever selection of the individual components allows the size and chemical properties of the pores to be tailored for specific applications. In this case, they are arranged so that CO2 can be stored in the pores.

The team from the Commonwealth Scientific and Industrial Research Organization (CSIRO) and Monash University (Australia) chose to use two different organic molecules for the vertical and horizontal struts. However, the molecules have one thing in common: irradiation with UV light causes them to alter their spatial structure. The molecules are securely fastened into the framework, which results in strain that limits the molecules to moving rapidly back and forth. Because of this, only small, limited regions of the framework move at any one time, and stop the entire structure collapsing.

The oscillating structural changes reduce the attractive forces between the surface of the pores and the absorbed CO2. A majority of the CO2 is squeezed out of the framework like water from a wrung-out sponge.

This process works best with UV light, but also works with concentrated natural sunlight. These light-reactive metal–organic frameworks could thus be an interesting approach for the energy-efficient removal of CO2 from combustion gases. Further investigations are needed to demonstrate how this separation works with real exhaust gases.

About the Author
Dr Matthew Hill is a senior research scientist with the CSIRO, Australia’s national laboratories. As an inorganic materials chemist he specialises in the construction of materials for clean and renewable energy applications. He is the recipient of the 2012 Eureka Prize for Emerging Leadership in Science.

Author: Matthew R. Hill, CSIRO Division of Materials Science and Engineering, Clayton (Australia), http://www.csiro.au/matthewhill

Title: Dynamic Photo-Switching in Metal–Organic Frameworks as a Route to Low-Energy Carbon Dioxide Capture and Release

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201206359

Matthew R. Hill | GDCh
Further information:
http://pressroom.angewandte.org
http://www.csiro.au/matthewhill

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie