Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf den Spuren photochemischer Reaktionen

05.04.2013
Trifft Licht auf organische Moleküle, setzt es Prozesse in Gang, die für die Wissenschaft von großem Interesse sind. Allerdings lassen sich die einzelnen Reaktionsstufen nur äußerst schwer identifizieren. Einem Team der Uni Würzburg ist das jetzt geglückt – mit Hilfe eines trickreichen Ansatzes.

Das ist der Traum vermutlich eines jeden Chemikers: Chemische Reaktionen auf einer molekularen Ebene aktiv zu kontrollieren, chemische Bindungen ganz nach Wunsch zu brechen oder zu knüpfen und auf diese Weise Substanzen mit maßgeschneiderten Eigenschaften zu produzieren.


Eine Sequenz ultrakurzer Laserpulse (links) führt zur chemischen Reaktion eines Merocyanin-Farbstoffs (Mitte), die detailliert mittels mehrdimensionaler Spektroskopie analysiert werden kann (rechts).
Grafik: Martin Kullmann, Universität Würzburg

Das allerdings erfordert zunächst ein möglichst exaktes Wissen über die vielen einzelnen Schritte, aus denen chemische Reaktionen üblicherweise bestehen. Wissen, das in vielen Bereichen noch fehlt und das auch nicht so einfach zu bekommen ist.

Jetzt allerdings haben Stefan Rützel und weitere Mitglieder der Arbeitsgruppe von Professor Tobias Brixner, dem Inhaber des Lehrstuhls für Physikalische Chemie I der Universität Würzburg, eine Technik entwickelt, mit der sich zumindest Reaktionsvorstufen zweifelsfrei identifizieren lassen.

Die renommierte Fachzeitschrift Physical Review Letters berichtet darüber in ihrer neuesten Ausgabe. Wegen der besonderen Bedeutung für die Forschung haben die Herausgeber der Zeitschrift die Würzburger Arbeit sogar in der Synopsis section of Physics (Opens external link in new windowphysics.aps.org) als Highlight hervorgehoben.

Forschung im Femtosekundenbereich

Zwei Voraussetzungen müssen erfüllt sein, wenn die Geheimnisse chemischer Reaktionen auf einer atomaren Größenordnung offen gelegt werden sollen: Geschwindigkeit und Geschicklichkeit. Denn auch wenn photochemische Reaktionen häufig über mehrere Zwischenprodukte verlaufen, dauern sie in der Regel doch nur unvorstellbar wenige Femtosekunden – also millionstel Bruchteile einer milliardstel Sekunde.

Mit ebenso extrem kurzen Laserpulsen aus Femtosekundenlasern ist es den Wissenschaftlern dennoch möglich, „Licht“ in die chemischen Vorgänge zu bringen. Dabei werden die Moleküle über einen bestimmten Zeitraum hinweg mit dem Laserlicht sozusagen „abgetastet“; man erhält eine Art Abbild der Dynamik der Reaktionsprozesse. Diese verbreitete Technik ist unter dem Stichwort „Anrege-Abfrage-Spektroskopie“ bekannt.

Ein Laserpuls im Doppelpack

„Bei der Anrege-Abfrage-Spektroskopie setzt ein Laserpuls eine bestimmte Reaktion in Gang. Ein anschließender zweiter Laserpuls untersucht dann die durch den ersten Puls hervorgerufene Dynamik“, erklärt Tobias Brixner die Arbeitsweise dieser Technik. Auf diese Weise ließen sich unter anderem charakteristische Lebenszeiten angeregter Zustände bestimmen und konkurrierende Reaktionsverläufe identifizieren.

Ein Problem kann diese Technik allerdings auch nicht lösen: „In einem Anrege-Abfrage-Experiment ist es äußerst schwierig, den speziellen Zustand eines Moleküls zu identifizieren, der am Anfang einer Reaktion steht“, erklärt Brixner. Das liege daran, dass der Laserpuls eine Vielzahl solcher Zustände erzeuge.

Geschickter Versuchsaufbau

Mit einer geschickten Versuchsanordnung haben es Stefan Rützel und weitere Mitglieder von Brixners Arbeitsgruppe jetzt jedoch geschafft, diese Reaktionsvorstufen zweifelsfrei zu identifizieren. Sie haben dafür Laserpulse unterschiedlicher Wellenlängen aus dem sichtbaren Bereich miteinander kombiniert und deren Korrelation zeitaufgelöst untersucht. Auf diese Weise erhielten sie Informationen darüber, ob bestimmte elektronische Übergänge in den Start- und Schlusszuständen quantenmechanisch miteinander verbunden sind. Oder in anderen Worten: Ob ein bestimmter elektronischer Zustand der Vorläufer eines anderen ist.

In ihrem Experiment hat die Arbeitsgruppe Merocyanin untersucht, ein Molekül, das in zwei unterschiedlichen räumlichen Anordnungen, sogenannten Konformationen, auftritt. Dabei konnten sie zeigen, dass nur eine Form sich nach der Anregung mit Licht in ein positiv geladenes Ion, ein Kation, verwandelte. Mit der von ihnen entwickelten Technik war es also möglich, den speziellen Vorläufer zu identifizieren, der angeregt werden muss, damit es zur gewünschten Reaktion kommt.

Interessant für Photovoltaik und Datenverarbeitung

Diese Technik, Reaktionswege über elektronische Zustände zu verfolgen, könnte auf die Untersuchung vieler chemischer Prozesse übertragbar sein, hoffen die Wissenschaftler. Potenzielle Einsatzgebiete sind beispielsweise photovoltaische Prozesse oder das Speichern und Überschreiben von Daten in optischen Speichermedien.

Die Studie wurde durchgeführt im Rahmen der DFG-finanzierten Forschergruppe „Light-Induced Dynamics in Molecular Aggregates“ (FOR 1809).

Tracing the Steps of Photoinduced Chemical Reactions in Organic Molecules by Coherent Two-Dimensional Electronic Spectroscopy Using Triggered Exchange. Stefan Ruetzel, Martin Kullmann, Johannes Buback, Patrick Nuernberger, and Tobias Brixner. Physical Review Letters, DOI:10.1103/PhysRevLett.110.148305

Kontakt

Prof. Dr. Tobias Brixner, T: (0931) 31-86330
brixner@phys-chemie.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was einen guten Katalysator ausmacht
24.05.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics