Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Springende Gene: Parasiten oder Triebkraft der Evolution?

03.02.2012
Parasiten nutzen die Ressourcen ihres Wirts für ihre eigenen Zwecke. Auch auf der Ebene der DNA gibt es Parasitismus, Genome enthalten bis zu 80 Prozent Fremd-DNA.

Eine Gruppe um Christian Schlötterer von der Vetmeduni Vienna hat nun bei einer Population von Fruchtfliegen das Auftreten solcher parasitärer DNA untersucht und kommt zu überraschenden Ergebnissen, was die damit verbundenen Mechanismen und deren mögliche Rolle in der Evolution betrifft. Ihre Arbeit erschien in der angesehenen Zeitschrift „PLoS Genetics“.

Fast alle Organismen haben Stücke von DNA in ihrer Erbsubstanz, die - evolutionär gesehen - nicht wirklich zu ihnen gehören. Diese so genannten ‚springenden Gene‘ oder ‚Transposable Elements‘ können ihren Ort innerhalb eines Genoms oder sogar zwischen den Genomen verschiedener Arten wechseln. Im Allgemeinen belasten sie ihren Wirtsorganismus in irgendeiner Weise. So können sie direkt zu Krankheiten führen, beispielsweise dann, wenn sie sich mitten in ein für das Überleben wichtiges Gen einbauen.

Die Mechanismen, die die Ausbreitung der springenden DNA innerhalb einer Population von Organismen steuern, verstehen Forschende heute schon sehr gut. Viele der damit verbundenen Details sind aber nach wie vor unklar. Die neuen Arbeiten an der Veterinärmedizinischen Universität Wien (Vetmeduni Vienna) könnten zum besseren Verständnis des zellulären Kampfes zwischen Wirtsorganismus und eindringender Fremd-DNA beitragen.

Verfeinerte Analysen

Robert Kofler und Andrea Betancourt, beide Wissenschaftler am Institut für Populationsgenetik an der Vetmeduni Vienna, haben mit neuartigen Gensequenziertechniken das Auftreten von Transposable Elements innerhalb einer Fruchtfliegenpopulation untersucht. Ähnliche Analysen gab es zwar schon früher, die Populationsgenetiker an der Vetmeduni Vienna arbeiteten jedoch mit einer Reihe von analytischen Verfeinerungen, um sicher zu gehen, dass sie sowohl bereits bekannte als auch noch unbekannte Stellen im Genom finden, an denen sich fremde DNA eingenistet hat. So konnten sie erstmals alle Transposable Elements in einer Fliegenpopulation katalogisieren. Zudem analysierten sie, wie oft an möglichen Einbaustellen tatsächlich fremde DNA zu finden ist.

Krieg in der Zelle

Die Ergebnisse waren dramatisch. Die Fruchtfliegen können an sehr vielen Stellen in ihrem Genom potenziell Transposable Elements tragen. Andererseits fanden die Forschenden relativ wenige Tiere in der untersuchten Population, die tatsächlich fremde DNA an diesen möglichen Orten des Einbaus trugen. Vermutlich passierte der Einbau der Fremd-DNA an diesen Stellen erst vor relativ kurzer Zeit. Erst in der Zukunft würde sich herausstellen, ob die eingefügte DNA auch dort bleiben wird. Einige der älteren DNA-Einfügungen waren wiederum im Genom weit verbreitet, dennoch schienen die meisten dieser Stellen in der Population noch nicht endgültig fixiert zu sein. Anders gesagt, die meisten dieser eingefügten Transposable Elements werden offenbar zunächst irgendwie gereinigt, bevor sie fixer Bestandteil des Genoms der Fliegenpopulation werden. Schlötterer fasst die Resultate seines Teams so zusammen: „Das Genom ist wie eine Aufzeichnung vergangener Kriege zwischen Wirtsorganismus und parasitischer DNA. Es gibt Angriffswellen, von denen die meisten erfolgreich abgewehrt werden. Nur eine kleine Zahl von Transposable Elements überlebt und breitet sich dann in der Population aus.“

Keime der biologischen Innovation

Noch überraschender war für die Forschenden, dass sie etwa ein Dutzend Stellen mit Fremd-DNA im Genom der Fruchtfliegen fanden, die öfter auftraten, als sie es von ihrem Alter her vermutet hätten. Offenbar sind diese Stellen für die Fliegen von irgendeinem Anpassungsnutzen, der dazu führt, dass sie von der Selektion begünstigt werden. Dieser Effekt wurde schon früher bei zwei Genorten entdeckt, und auch Schlötterer fand diese beiden Orte mit seinen Analysen. Jedoch haben die Gene in unmittelbarer Nachbarschaft eine Vielzahl unterschiedlicher Funktionen, deshalb ist der Nutzen dieser Fremd-DNA für die Fliegen nicht klar. „Vielleicht sollten wir die Transposable Elements überhaupt nicht als Parasiten sehen“, sagt Schlötterer, „Sie gehören möglicherweise zu den Mechanismen, mit denen Organismen ihr genetisches Repertoire vergrößern können. Dieser Mechanismus könnte helfen, die Tiere auf zukünftige Herausforderungen vorzubereiten.“

Der Artikel „Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster“ von Robert Kofler, Andrea J. Betancourt und Christian Schlötterer wurde soeben in der Open Access Zeitschrift „PLoS Genetics“ veröffentlicht.

Der wissenschaftliche Artikel im Volltext online (Open Access):
http://www.plosgenetics.org/doi/pgen.1002487
Rückfragehinweis
Prof. Christian Schlötterer, E christian.schloetterer@vetmeduni.ac.at, T +43 1 25077-4300
Aussender
Klaus Wassermann, E klaus.wassermann@vetmeduni.ac.at, T +43 1 25077-1153

Beate Zöchmeister | Veterinärmedizinische Universitä
Weitere Informationen:
http://www.vetmeduni.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie