Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sprechende Gehirnhälften

11.01.2017

Mannheimer Wissenschaftler entdecken Mechanismus der Entstehung von Nervennetzen

Die Arbeitsgruppe um PD Dr. Matthias Carl, die am Lehrstuhl für Zell- und Molekularbiologie der Medizinischen Fakultät Mannheim der Universität Heidelberg forscht, hat einen neuen Mechanismus der Entstehung von Nervennetzen entdeckt. Die Forschungsergebnisse sind aktuell im hochrangigen Forschungsjournal Current Biology veröffentlicht.


Aufsicht auf den Kopf eines 1,5 Tage alten transgenen Fisch-Embryos während der Langzeit-Aufnahmen am konfokalen Mikroskop. Wachsende Nervenbahnen können über die verschiedenen Ebenen verfolgt werden.

UMM

Das menschliche Gehirn enthält einige Millionen Nervenbahnen, die sich alle während der Entwicklung vom Embryo zum erwachsenen Menschen ausbilden, indem sie von Zelle A zu Zelle B wachsen und diese verbinden. Geschieht dies unpräzise oder gar nicht, hat dies zumeist verheerende neurologische Auswirkungen.

Die meisten Nervenbahnen finden sich zweimal im Gehirn, jeweils einmal auf der rechten und der linken Gehirnhälfte. Die Entwicklung der meist spiegelbildlichen Nervenbahnen scheint sehr ähnlich zu verlaufen. Dies ist nicht selbstverständlich, da sich die Gehirnhälften in ihrer Anatomie und Funktion in vielen Bereichen erheblich unterscheiden (siehe Hüsken et al., 2014, Current Biology). Es stellt sich daher die Frage, wie die Nervenbahnen ihren oftmals weiten Weg durch das Gehirn zu ihren Zielorten finden. Und: Wie kann dies in beiden Gehirnhälften in ähnlicher Weise geschehen, selbst wenn diese sich voneinander unterscheiden?

Die Arbeitsgruppe um PD Dr. Carl hat diese Fragen erforscht. Als Modellsystem verwenden die Wissenschaftler den Zebrafisch, da es die Transparenz der Fischembryonen erlaubt, Entwicklungsprozesse im lebenden Organismus zu verfolgen. Das von der Arbeitsgruppe studierte Nervennetz ist das sogenannte habenulare Nervennetz, dessen Funktion im Menschen mit pathophysiologischen Syndromen wie Depression und Schizophrenie in Verbindung gebracht wird.

Die Forscher in Mannheim arbeiteten mit dem Nikon-Imaging Zentrum in Heidelberg und der Core Facility Live Cell Imaging Mannheim (LIMA) am Zentrum für Biomedizin und Medizintechnik (CBTM) der Medizinischen Fakultät Mannheim sowie mit Arbeitsgruppen in Paris und Lyon zusammen. Sie studierten die vier Tage andauernde Entwicklung des habenularen Nervennetzes über Langzeit-Zeitrafferaufnahmen in Verbindung mit Laser-Manipulationen und selbst entwickelter Computer-Software (siehe Abbildung). Dabei konnten die Wissenschaftler zeigen, dass die Kommunikation zwischen den beiden Gehirnhälften notwendig ist, damit die habenularen Nervenbahnen auf beiden Seiten des Gehirns ihr Ziel finden.

Auf ihrem Weg durch das Gehirn kreuzen die Nervenbahnen ein zweites Nervennetz, das die beiden Gehirnhälften miteinander verbindet und seinen Ursprung im Gehirnbereich des Thalamus hat. Diese thalamischen Nervenzellen senden Signale an die habenularen Nervenzellen, die Ihnen anzeigen, zu welchem Zeitpunkt sie ihre Nervenbahnen ausformen sollen.

Zerstört man nämlich die thalamischen Nerven mit einem Laser auf einer Seite des Gehirns, ist das synchrone Wachstum der habenularen Nervenbahnen gestört und die Verbindungen zwischen den Gehirnhälften werden nicht mehr gebildet. Dies hat zur Folge, dass die Nervenbahnen auf beiden Seiten des Gehirns aufhören zu wachsen. Das bedeutet, dass ein Nervennetz (Habenula) zum Wachstum der eigenen Nervenbahnen ein zweites Nervennetz (Thalamus) benötigt, und zwar für die Kommunikation zwischen den beiden Seiten des Gehirns.

„Die Entdeckung dieses neuen Mechanismus der Nervennetzentstehung war bis zum heutigen Zeitpunkt schlichtweg nicht möglich. Erst die Weiterentwicklung von Mikroskopie-Techniken und Bildgebungsverfahren in Kombination mit unserem bislang einzigartigen Assay haben es jetzt erlaubt, Netzwerke in lebenden Organismen über einen so langen Zeitraum filmen zu können, ohne mit ihrer Entwicklung zu interferieren. Diese Filme sind sehr anschauliches Lehrmaterial für unsere Studenten und für uns im Labor wird es natürlich jetzt spannend, die Moleküle zu identifizieren, die die beiden Gehirnhälften miteinander sprechen lassen“, so PD Dr. Carl.

Bislang war eine kommunikative Rolle von Nervenbahnen, die die Gehirnhälften miteinander verbinden, nur bei der Gehirnfunktion bekannt. Dass diese Kommissuren auch während der Entstehung von Nervennetzen eine so fundamentale Rolle zu spielen scheinen, ist neu. Die Forscher halten es für gut denkbar, dass der entdeckte Mechanismus auch von anderen Nervennetzen zur Entstehung genutzt werden könnte.

Weitere Informationen:

DOI: http://dx.doi.org/10.1016/j.cub.2016.11.038 - Publikation

Dr. Eva Maria Wellnitz | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften