Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

How to split a water molecule

19.04.2010
A research team at RIKEN, Japan’s flagship research organization has succeeded for the first time in selectively controlling for reaction products in the dissociation of a single water molecule on an ultrathin film.

The reaction, described in the April 19th issue of Nature Materials, opens the door to the creation of novel functional catalysts and applications in clean energy production.

In recent years, the knowledge that materials exhibit novel properties at the nano-scale has driven a search for functional nano-materials with useful applications. Among these, ultrathin metal oxide films have attracted attention for their application in reaction catalysis, yet mechanisms underlying this catalytic role have remained unclear.

Using a scanning tunneling microscope (STM) at ultra-low temperatures, the research team explored the dynamics of single water molecules interacting with a film of magnesium oxide (MgO) several atoms in thickness (Figure 1). They discovered that by injecting tunnelling electrons into water molecules on the MgO surface (Figure 2), they could select between dissociation pathways: excitation of the molecule’s vibrational states induced dissociation into hydroxyl (H + OH) (Figure 3 (a) and (b)), whereas excitation of its electronic states induced dissociation into atomic oxygen (O) (Figure 3 (c) and (d)) - see attached file.

The controlled dissociation of water molecules via selected reaction pathways presents unique opportunities in targeted catalysis, particularly in the production of hydrogen, a potential source of clean energy. While advancing our understanding of the dynamics of water molecules, the discovery also sets the stage for applications in the catalysis of more complex systems on insulating films.

For more information, please contact:

Dr. Yousoo Kim
Surface and Interface Science Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-4073 / Fax: +81-(0)48-462-4663
Email: ykim@riken.jp
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp
ABOUT RIKEN
RIKEN, Japan’s flagship research organization, conducts basic and applied experimental research in a wide range of science and technology fields including physics, chemistry, medical science, biology and engineering.

Magdeline Pokar | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Love at first smell: Can birds choose mates by their odors?
28.11.2014 | Veterinärmedizinische Universität Wien

nachricht NIH Scientists Determine How Environment Contributes to Several Human Diseases
27.11.2014 | National Institute of Environmental Health Sciences (NIEHS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Tagung Schwimmende Bauten

27.11.2014 | Veranstaltungen

Folgt aus Industrie 4.0 automatisch Personalmanagement 4.0?

27.11.2014 | Veranstaltungen

Kommunikation zwischen Autos: 1. internationale IEEE-Konferenz vom 3.-5.12. in Paderborn

26.11.2014 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Liebe auf den ersten Riecher – Vögel wählen ihre Partner nach dem Geruch

28.11.2014 | Biowissenschaften Chemie

Rosetta-Mission: Der unglaubliche Flug der Landeeinheit »Philae«

28.11.2014 | Physik Astronomie

Klein, fein und gemein

28.11.2014 | Studien Analysen