Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinnenantrieb mit Muskeln und Hydraulik

06.03.2012
Biologe der Uni Jena präsentiert neue Erkenntnisse über die Fortbewegung von Spinnen

Bagger, Gabelstapler, Aufzüge, Spinnen – sie alle haben eins gemeinsam: Sie nutzen Hydraulik, um sich zu bewegen. Doch während bei Maschinen der Mensch die Techniken entwickelt hat, sind Spinnenbeine von der Natur mit Hydraulik ausgestattet. Sie ist dafür zuständig, dass sich das Spinnenbein nach einer Beugung wieder streckt.

Denn anders als etwa bei Säugetieren haben Spinnen in wichtigen Beingelenken keine Muskulatur, die das übernehmen kann. Stattdessen pumpen die Tiere mit hohem Druck Hämolymphe, d. h. ihr bläuliches Blut, durch Kanäle in die Beine. Seit den 1950er Jahren des letzten Jahrhunderts gingen Wissenschaftler davon aus, dass dieser Mechanismus auch entscheidend für den Antrieb der Tiere ist, vor allem in den Hinterbeinen, die sich bei der Fortbewegung ausschließlich strecken.

Jetzt haben Wissenschaftler der Friedrich-Schiller-Universität Jena herausgefunden, dass das Hydraulik-Prinzip nicht von allen Spinnen gleichermaßen eingesetzt wird. Ihnen war aufgefallen, dass eine große südamerikanische Laufspinne besonders das hintere Beinpaar beansprucht, wenn sie zum Sprung ansetzt. „Diese beiden Beine, die beim Sprung sehr stark zur Bewegung beitragen, werden doch durch Muskeln gestreckt“, sagt Dr. Tom Weihmann vom Lehrstuhl für Bewegungswissenschaft des Instituts für Sportwissenschaft der Universität Jena. „Allerdings befindet sich diese Muskulatur in der Hüfte, denn in den Beinen selbst gibt es keine streckende Muskulatur.“ Diese Muskeln drücken den Oberschenkel nach unten und strecken damit das Bein. Hydraulik spielt hierbei keine Rolle.

Der Biologe hat die Bewegungen der südamerikanischen Laufspinne „Ancyclometes concolor“ genauestens beobachtet. Er ließ die handtellergroßen Tiere über eine äußerst empfindliche Kraftmessplatte laufen, die bereits minimale Bodenkräfte erkennbar macht. Dabei filmte der Jenaer Forscher Laufbewegungen und Sprünge der Spinnen. „Wir haben die Tiere erschreckt, damit sie sehr schnell beschleunigen und möglichst große Kräfte aufwenden“, erklärt Weihmann. „Durch den Vergleich von Kraftvektor und Beinstellung konnten wir erkennen, dass die Kraft zur Beinstreckung von der Hüfte ausgeht.“

Seine Forschungsergebnisse, die er im Journal of Experimental Biology (http://jeb.biologists.org/content/215/4/iii) veröffentlicht hat, liefern grundlegende Informationen über die Fortbewegung großer Spinnen und ändern die Sicht der Wissenschaft auf die einzigartige Funktionsweise der Beine dieser Tiere. Da hydraulische Antriebe traditionell einen hohen Stellenwert bei technischen Anwendungen haben, können die neuen Erkenntnisse auch interessant für Ingenieure sein. Obwohl Spinnen eine beliebte Vorlage für Roboter sind, haben die meisten spinnenähnlichen Roboter bisher nicht mehr mit den Tieren gemein als ihre äußere Gestalt. Ausgestattet mit spinnenähnlichen hydraulischen Beinen und entsprechender Bein-Koordination sollten die mehrbeinigen Laufmaschinen noch deutlich leistungsfähiger werden, meint Weihmann.

Kontakt:
Dr. Tom Weihmann
Institut für Sportwissenschaft der Universität Jena
Seidelstraße 20, 07743 Jena
Tel.: 03641 / 945713
E-Mail: tom[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de/
http://jeb.biologists.org/content/215/4/iii

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten