Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinnen spurten effektiv auch ohne Elastizität

20.08.2013
Wissenschaftler der Universität Jena ergründet Mechanismen der Fortbewegung von Jagdspinnen

Die Jagdspinne (Cupiennius salei) macht ihrem Namen alle Ehre. Zwar verbringt sie den Tag eher faul im schützenden Dickicht des zentralamerikanischen Dschungels. Doch nach Einbruch der Dunkelheit zeigt sie, was sie kann.


Die Jagdspinne (Cupiennius salei) schlägt in Sachen Schnelligkeit Sprintstar Usain Bolt um Längen. Foto: Tom Weihmann/FSU

Ruhig wartet sie auf den großen Blättern von Bananen und anderen tropischen Pflanzen auf Beute. Sobald sich ein unvorsichtiges Insekt auf wenige Zentimeter nähert, ist es mit der Gemütlichkeit schlagartig vorbei: In Sekundenbruchteilen stürzt sich das Tier auf die Beute und erreicht für einen kurzen Moment eine extrem hohe Laufgeschwindigkeit.

„Über kurze Distanzen erreichen diese Spinnen Laufgeschwindigkeiten von bis zu 20 Körperlängen pro Sekunde“, sagt Dr. Tom Weihmann von der Friedrich-Schiller-Universität Jena. So legt die etwa handtellergroße Spinne in einer Sekunde bis zu 70 Zentimeter zurück. Der Bewegungsphysiologe Weihmann hat in einer aktuellen Studie untersucht, was die Jagdspinne und ihre Verwandten zu solch pfeilschnellen Sprintern macht. Seine Ergebnisse sind im Fachmagazin „PLoS ONE“ nachzulesen (DOI: 10.1371/journal.pone.0065788).

Zum Vergleich: Wollte ein Mensch von 1,80 Meter das Tempo der Jagdspinne erreichen, so müsste er in einer Sekunde 36 Meter zurücklegen – Sprint-Star Usain Bolt schaffte bei seinem Weltrekord über 100 Meter aber gerade einmal 12,5 Meter pro Sekunde. „Bisher wurde angenommen, dass derartig schnelle Bewegungen immer mit der Nutzung elastischer Eigenschaften des Skelettsystems einhergehen, wie es etwa bei Geparden, Hasen oder auch beim Menschen der Fall ist“, erklärt Dr. Weihmann. Bei den meisten schnellen Läufern werden Sehnen und Bänder gedehnt, wenn die Beine am Boden sind und das Körpergewicht auf sie einwirkt. Kurz bevor die Beine den Bodenkontakt verlieren und nach vorn geschwungen werden, wird die gespeicherte Feder-Energie dann wieder für den Vortrieb genutzt. Anders als Säugetiere und schnell laufende Insekten besitzen Spinnen keine elastischen Elemente in ihren Beinen. „Wenn sie dennoch die typischen Auf-und-Ab-Bewegungen zeigen würden, die jeder Jogger kennt, dann wäre das energetisch sehr unvorteilhaft.“

Wie der Jenaer Biologe nun in seiner Studie erstmals zeigen konnte, reagieren die Tiere auf dieses Dilemma, indem sie bei hohen Geschwindigkeiten Körperschwingungen so weit wie möglich vermeiden. „Das hat auch den nützlichen Nebeneffekt, dass Beute und Räuber die Spinnen nicht so gut orten können, da diese kaum Schwingungen auf den Untergrund übertragen, die sonst verräterisch wären.“ Denn die Spinne kann auch selbst zur Gejagten werden, wenn ein Vogel oder Säuger den proteinreichen Happen verspeisen will.

Für Dr. Weihmann sind seine Untersuchungen an den Jagdspinnen biomechanische Grundlagenforschung. „Dennoch lassen sich die aktuellen Erkenntnisse auf praktische Anwendungen übertragen“, ist er überzeugt. So nutzen die Entwickler von Laufrobotern bisher vor allem elastische Lösungen, die laufenden Insekten und Säugetieren nachempfunden sind. „Doch Elastizität ist stets mit einer Erhöhung der Unsicherheit bei der Ansteuerung einzelner Gliedmaßen verbunden, was für technische Anwendungen problematisch sein kann“, weiß der Jenaer Forscher. Daher sei die energieeffiziente Fortbewegung der Spinnen aus seiner Sicht eine gute Alternative, die solche Unsicherheiten vermeidet, und ein geeignetes Vorbild für schnelle Laufroboter.

Original-Publikation:
Weihmann T (2013) crawling at High Speeds: Steady Level Locomotion in the Spider Cupiennius salei – Global Kinematics and Implications for Centre of Mass Dynamics. PLoS ONE 8(6): e65788. doi:10.1371/journal.pone.0065788
Kontakt:
Dr. Tom Weihmann
Institut für Sportwissenschaft der Universität Jena
Seidelstraße 20, 07749 Jena
Tel.: 03641 / 945713
E-Mail: tom[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics