Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinat und Nanodiamant?

25.06.2013
Forscher der Universität Ulm haben mit Hilfe von Nanodiamanten Biosensoren entwickelt, die in der Lage sind, den Bluteisenwert zuverlässiger zu messen als herkömmliche Verfahren.

Ihnen ist es gelungen, die Magnetfelder der am Ferritin gebundenen Eisenionen durch ein diamantbasiertes hochsensibles Messverfahren zu erfassen. Hierfür wurden winzigste Partikel künstlicher Diamanten durch elektrostatische Interaktionen mit dem Ferritin verbunden.


Kleine Diamanten, circa 100 Mikrometer Durchmesser, in einer mikroskopischen Aufnahme. Spezifische Gitter-Fehler geben den künstlich hergestellten Edelsteinen nicht nur ihre typische Farbe, sondern sie bilden auch die Grundlage für die Magnetfeldmessungen. Für die Experimente der Ulmer Gruppe werden die Diamanten bis auf die Größe von 20 Nanometern zermahlen. Zum Vergleich, ein menschliches Haar hat einen Durchmesser von circa 70 Mikrometern und ist damit 3000 mal dicker als die im Experiment verwendeten Nanodiamanten.
Foto: Fedor Jelezko


Grafisches Modell eines Ferritins, im Inneren: die gespeicherten Eisenionen.
Grafik: Tanja Weil

Das Forschungsprojekt von Martin Plenio, Fedor Jelezko und Tanja Weil wurde im Rahmen eines mit 10,3 Millionen Euro dotierten BioQ-Synergy-Grant der EU realisiert, der im Dezember letzten Jahres bewilligt worden war.

Nicht nur Comic-Held Popeye schwört drauf, auch Generationen von Eltern haben ihren Nachwuchs damit `verwöhnt´: Spinat. Zwar ist mittlerweile bekannt, dass das Gemüse nicht ganz so eisenhaltig ist wie ursprünglich angenommen, doch dass dieses Spurenelement essentiell ist für das physische Wohlbefinden, ist bis heute unstrittig. Denn Eisenmangel – ausgelöst durch Fehlernährung – kann zu Blutarmut (Anämie) führen. Ein zu hoher Eisenwert im Blut dagegen signalisiert möglicherweise das Vorliegen akuter Entzündungsreaktionen.

Der Eisengehalt im Blut ist daher ein wichtiges medizinisches Diagnosemittel. Forscher der Universität Ulm um die Physiker Fedor Jelezko, Martin Plenio und die Chemikerin Tanja Weil haben nun auf der Grundlage künstlicher Nanodiamanten einen neuartigen Biosensor zur Bestimmung des Eisengehalts entwickelt.

Realisiert wurde dieses Projekt im Rahmen des mit 10,3 Millionen Euro dotierten Synergy Grant BioQ des Europäischen Forschungsrates, mit dem die Wissenschaftler im vergangenen Dezember ausgezeichnet wurden. „Bluttests, die den Eisengehalt im menschlichen Körper messen, erfassen nicht – wie man denken könnte – freie Eisenionen im Blut. Denn ungebundenes Eisen wirkt toxisch und ist in der Regel kaum im Blut zu finden“, erläutert Professorin Tanja Weil, Leiterin des Instituts für Organische Chemie III der Universität Ulm.

Die Messverfahren richten sich stattdessen auf bestimmte Proteine, die für die Speicherung und den Transport von Eisen verantwortlich sind. Eines dieser Proteine ist das sogenannte Ferritin, das bis zu 4500 Eisenionen binden kann. Die meisten herkömmlichen Tests basieren auf immunologischen Verfahren und schätzen die Eisenkonzentration indirekt auf der Grundlage verschiedener Marker, wobei die Ergebnisse in bestimmten klinischen Situationen widersprüchlich ausfallen können.

Die Ulmer Wissenschaftler haben nun einen komplett neuen Ansatz entwickelt, um das Ferritin im Organismus aufzuspüren. Und zwar mit Hilfe einiger Kniffe. Zuerst hielten die Wissenschaftler einmal fest, dass Eisen ein Magnet ist, und Eisenatome magnetische Felder ausbilden, die sich durch Überlagerung so verstärken, dass diese technisch messbar werden. Ähnlich verhält es sich mit den an Ferritin gebundenen Eisenionen, deren Magnetfelder allerdings so winzig sind, dass sie äußerst schwer zu fassen sind. Hierin bestand nun die eigentliche Herausforderung für die Wissenschaftler: ein Verfahren zu entwickeln, das sensitiv genug ist, um derart schwache Magnetfelder präzise zu ermitteln. Mit Hilfe einer völlig neuartigen, hochinnovativen Technologie gelang es den Forschern nun, solche hochsensiblen Magnetfeldsensoren zu entwickeln. Deren Herzstück: winzigste künstliche Diamanten in Nanometergröße.

Der Trick dabei: verwendet werden keine perfekten Diamanten – farblos und transparent – sondern Diamanten mit sogenannten Gitter-Fehlern, die die Farbgebung der Diamanten beeinflussen. „Diese Farbzentren erlauben es uns, die Ausrichtung von Elektronenspins in externen Feldern optisch auszulesen“, erklärt Professor Fedor Jelezko, Leiter des Ulmer Instituts für Quantenoptik. Schließlich musste das Team einen Weg finden, um das Ferritin an der Diamant-Oberfläche anhaften zu lassen. „Dies gelang uns dann tatsächlich mit Hilfe von elektrostatischen Interaktionen zwischen den winzigen Diamantpartikeln und den Ferritin-Proteinen“, ergänzt Weil.

„Durch theoretische Modellierung konnten wir sicherstellen, dass das gemessene Signal in der Tat übereinstimmt mit der Präsenz von Ferritin und das Messverfahren an sich gültige Ergebnisse liefert“, sagt Martin Plenio, Leiter des Instituts für Theoretische Physik. Für die Zukunft verfolgen die Ulmer Forscher das ambitionierte Ziel, auch die genaue Anzahl der Proteine bestimmen zu können.

Mit dieser innovativen Entwicklung, die in der aktuellen Ausgabe der renommierten Fachzeitschrift NanoLetters veröffentlicht wurde, setzen die Ulmer Forscher immerhin einen ersten Meilenstein hin zu ihrem – mit dem BioQ-Synergy-Grant der EU ausgezeichneten – übergeordneten Forschungsziel. Im Mittelpunkt steht dabei die Erforschung von Quanteneigenschaften in der Biologie sowie die Herstellung möglicher Verbindungen zwischen Diamant und Biostrukturen, beispielsweile um neue Quantentechnologien zu realisieren. „Auf der Grundlage von Nanostrukturen in Diamanten können damit hochempfindliche Sensoren hergestellt werden, die sowohl in der Biologie als auch der Medizin praktische Anwendung finden“, so die Ulmer Naturwissenschaftler. Aber ihre neue Erfindung hat auch Grenzen: „Ob der Spinat wirklich gegessen wurde, das verrät uns der Diamant leider nicht. Das wissen die Mütter und Väter wohl besser“, gesteht Quantenphysiker Plenio.

Weitere Informationen:
Prof. Dr. Martin B. Plenio, Leiter des Instituts für Theoretische Physik, Tel.: 07 31 / 50 – 22900; Email: Martin.Plenio@uni-ulm.de

Prof. Dr. Tanja Weil, Leiterin des Instituts für Organische Chemie III, Tel.: 0731 / 50 – 22870; Email: Tanja.Weil@uni-ulm.de

Prof. Dr. Fedor Jelezko, Leiter des Instituts für Quantenoptik, Tel.: 07 31 / 50 – 23750; Email: Fedor.Jelezko@uni-ulm.de

Willi Baur | idw
Weitere Informationen:
http://www.uni-ulm.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics