Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinat und Nanodiamant?

25.06.2013
Forscher der Universität Ulm haben mit Hilfe von Nanodiamanten Biosensoren entwickelt, die in der Lage sind, den Bluteisenwert zuverlässiger zu messen als herkömmliche Verfahren.

Ihnen ist es gelungen, die Magnetfelder der am Ferritin gebundenen Eisenionen durch ein diamantbasiertes hochsensibles Messverfahren zu erfassen. Hierfür wurden winzigste Partikel künstlicher Diamanten durch elektrostatische Interaktionen mit dem Ferritin verbunden.


Kleine Diamanten, circa 100 Mikrometer Durchmesser, in einer mikroskopischen Aufnahme. Spezifische Gitter-Fehler geben den künstlich hergestellten Edelsteinen nicht nur ihre typische Farbe, sondern sie bilden auch die Grundlage für die Magnetfeldmessungen. Für die Experimente der Ulmer Gruppe werden die Diamanten bis auf die Größe von 20 Nanometern zermahlen. Zum Vergleich, ein menschliches Haar hat einen Durchmesser von circa 70 Mikrometern und ist damit 3000 mal dicker als die im Experiment verwendeten Nanodiamanten.
Foto: Fedor Jelezko


Grafisches Modell eines Ferritins, im Inneren: die gespeicherten Eisenionen.
Grafik: Tanja Weil

Das Forschungsprojekt von Martin Plenio, Fedor Jelezko und Tanja Weil wurde im Rahmen eines mit 10,3 Millionen Euro dotierten BioQ-Synergy-Grant der EU realisiert, der im Dezember letzten Jahres bewilligt worden war.

Nicht nur Comic-Held Popeye schwört drauf, auch Generationen von Eltern haben ihren Nachwuchs damit `verwöhnt´: Spinat. Zwar ist mittlerweile bekannt, dass das Gemüse nicht ganz so eisenhaltig ist wie ursprünglich angenommen, doch dass dieses Spurenelement essentiell ist für das physische Wohlbefinden, ist bis heute unstrittig. Denn Eisenmangel – ausgelöst durch Fehlernährung – kann zu Blutarmut (Anämie) führen. Ein zu hoher Eisenwert im Blut dagegen signalisiert möglicherweise das Vorliegen akuter Entzündungsreaktionen.

Der Eisengehalt im Blut ist daher ein wichtiges medizinisches Diagnosemittel. Forscher der Universität Ulm um die Physiker Fedor Jelezko, Martin Plenio und die Chemikerin Tanja Weil haben nun auf der Grundlage künstlicher Nanodiamanten einen neuartigen Biosensor zur Bestimmung des Eisengehalts entwickelt.

Realisiert wurde dieses Projekt im Rahmen des mit 10,3 Millionen Euro dotierten Synergy Grant BioQ des Europäischen Forschungsrates, mit dem die Wissenschaftler im vergangenen Dezember ausgezeichnet wurden. „Bluttests, die den Eisengehalt im menschlichen Körper messen, erfassen nicht – wie man denken könnte – freie Eisenionen im Blut. Denn ungebundenes Eisen wirkt toxisch und ist in der Regel kaum im Blut zu finden“, erläutert Professorin Tanja Weil, Leiterin des Instituts für Organische Chemie III der Universität Ulm.

Die Messverfahren richten sich stattdessen auf bestimmte Proteine, die für die Speicherung und den Transport von Eisen verantwortlich sind. Eines dieser Proteine ist das sogenannte Ferritin, das bis zu 4500 Eisenionen binden kann. Die meisten herkömmlichen Tests basieren auf immunologischen Verfahren und schätzen die Eisenkonzentration indirekt auf der Grundlage verschiedener Marker, wobei die Ergebnisse in bestimmten klinischen Situationen widersprüchlich ausfallen können.

Die Ulmer Wissenschaftler haben nun einen komplett neuen Ansatz entwickelt, um das Ferritin im Organismus aufzuspüren. Und zwar mit Hilfe einiger Kniffe. Zuerst hielten die Wissenschaftler einmal fest, dass Eisen ein Magnet ist, und Eisenatome magnetische Felder ausbilden, die sich durch Überlagerung so verstärken, dass diese technisch messbar werden. Ähnlich verhält es sich mit den an Ferritin gebundenen Eisenionen, deren Magnetfelder allerdings so winzig sind, dass sie äußerst schwer zu fassen sind. Hierin bestand nun die eigentliche Herausforderung für die Wissenschaftler: ein Verfahren zu entwickeln, das sensitiv genug ist, um derart schwache Magnetfelder präzise zu ermitteln. Mit Hilfe einer völlig neuartigen, hochinnovativen Technologie gelang es den Forschern nun, solche hochsensiblen Magnetfeldsensoren zu entwickeln. Deren Herzstück: winzigste künstliche Diamanten in Nanometergröße.

Der Trick dabei: verwendet werden keine perfekten Diamanten – farblos und transparent – sondern Diamanten mit sogenannten Gitter-Fehlern, die die Farbgebung der Diamanten beeinflussen. „Diese Farbzentren erlauben es uns, die Ausrichtung von Elektronenspins in externen Feldern optisch auszulesen“, erklärt Professor Fedor Jelezko, Leiter des Ulmer Instituts für Quantenoptik. Schließlich musste das Team einen Weg finden, um das Ferritin an der Diamant-Oberfläche anhaften zu lassen. „Dies gelang uns dann tatsächlich mit Hilfe von elektrostatischen Interaktionen zwischen den winzigen Diamantpartikeln und den Ferritin-Proteinen“, ergänzt Weil.

„Durch theoretische Modellierung konnten wir sicherstellen, dass das gemessene Signal in der Tat übereinstimmt mit der Präsenz von Ferritin und das Messverfahren an sich gültige Ergebnisse liefert“, sagt Martin Plenio, Leiter des Instituts für Theoretische Physik. Für die Zukunft verfolgen die Ulmer Forscher das ambitionierte Ziel, auch die genaue Anzahl der Proteine bestimmen zu können.

Mit dieser innovativen Entwicklung, die in der aktuellen Ausgabe der renommierten Fachzeitschrift NanoLetters veröffentlicht wurde, setzen die Ulmer Forscher immerhin einen ersten Meilenstein hin zu ihrem – mit dem BioQ-Synergy-Grant der EU ausgezeichneten – übergeordneten Forschungsziel. Im Mittelpunkt steht dabei die Erforschung von Quanteneigenschaften in der Biologie sowie die Herstellung möglicher Verbindungen zwischen Diamant und Biostrukturen, beispielsweile um neue Quantentechnologien zu realisieren. „Auf der Grundlage von Nanostrukturen in Diamanten können damit hochempfindliche Sensoren hergestellt werden, die sowohl in der Biologie als auch der Medizin praktische Anwendung finden“, so die Ulmer Naturwissenschaftler. Aber ihre neue Erfindung hat auch Grenzen: „Ob der Spinat wirklich gegessen wurde, das verrät uns der Diamant leider nicht. Das wissen die Mütter und Väter wohl besser“, gesteht Quantenphysiker Plenio.

Weitere Informationen:
Prof. Dr. Martin B. Plenio, Leiter des Instituts für Theoretische Physik, Tel.: 07 31 / 50 – 22900; Email: Martin.Plenio@uni-ulm.de

Prof. Dr. Tanja Weil, Leiterin des Instituts für Organische Chemie III, Tel.: 0731 / 50 – 22870; Email: Tanja.Weil@uni-ulm.de

Prof. Dr. Fedor Jelezko, Leiter des Instituts für Quantenoptik, Tel.: 07 31 / 50 – 23750; Email: Fedor.Jelezko@uni-ulm.de

Willi Baur | idw
Weitere Informationen:
http://www.uni-ulm.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise