Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spermazellen sind passive Ladung bei Blütenpflanzen

19.06.2017

Erfolgreiche Kooperation der Universität Regensburg mit den Peking Universität und der Rutgers Universität

Die langjährige Kooperation zwischen der Universität Regensburg, der Peking Universität in Beijing (China) und der Rutgers Universität in New Jersey (USA) zeigt mit zwei hochrangigen Publikationen in der TOP-Biologie-Zeitschrift „Current Biology“ und in der TOP-Pflanzenzeitschrift „Nature Plants“ erste Erfolge.


Zwei Spermazellen (grün; Zellkerne in rot) werden als passive Ladung mit Hilfe eines „Hakens“ (rechts) im Pollenschlauch transportiert.

Foto: PD Dr. Stefanie Sprunck – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Die Verschmelzung von Ei- und Spermazelle (Befruchtung) markiert bei den sexuellen Organismen den Beginn neuen Lebens und eines neuen Individuums. Bei den Blütenpflanzen ist dieser Prozess besonders komplex und beinhaltet eine doppelte Befruchtung, wobei eine Samenzelle mit der Eizelle verschmilzt woraus sich ein Embryo entwickelt und die zweite Spermazelle die so genannte Zentralzelle befruchtet, woraus das Endosperm entsteht.

Die beiden Befruchtungsprodukte sind die Hauptbestandteile pflanzlicher Samen und stellen somit die Ernährungsgrundlage zahlreicher Tiere und des Menschen dar. Eine weitere Besonderheit bei Blütenpflanzen stellt der Verlust der Mobilität der Spermazellen dar.

Während Spermazellen bei den meisten Tieren und beim Menschen beweglich sind und von der Eizelle der eigenen Art angelockt werden, haben Pflanzen in Anpassung an kalte und trockene Standorte neue Fortpflanzungsstrategien entwickelt. Ursprünglichere Pflanzen, wie Moose und Farne, die bevorzugt an feuchten Standorten wachsen, besitzen noch bewegliche Spermazellen, während Samenpflanzen, wie die Nadelbäume und die vorherrschenden Blütenpflanzen, die Spermazellen in Pollenkörner einschließen.

Spermazellen sind so nicht nur geschützt, sondern können auch durch Wind oder mit Hilfe von Tieren über große Distanzen transportiert werden. Gelangen die Pollenkörner auf Blüten der eigenen Art, keimen die Pollenkörner, und die Spermazellen werden mit Hilfe des Pollenschlauchs tief ins mütterliche Gewebe transportiert und im Eiapparat freigesetzt, wo es zur doppelten Befruchtung kommt.

Inwieweit Spermazellen bei Blütenpflanzen die Pollenschläuche und damit ihre Reise zum Eiapparat selbst regulieren wird seit langem debattiert. Mit Hilfe einer neuen Mutante, bei der teilweise Pollenschläuche ohne Spermazellen gebildet werden, konnten Forscher der Universität Regensburg, am Lehrstuhl für Zellbiologie und Pflanzenbiochemie, der Peking Universität in Beijing (China) und der Rutgers Universität in New Jersey (USA) jetzt diese Diskussion beenden und zeigen, dass Spermazellen eine rein passive Ladung darstellen.

Auch ohne Spermazell-Ladung keimen Pollenschläuche, dringen ins maternale Gewebe ein, werden vom Eiapparat angelockt und platzen, um ihre vermeintliche Ladung freizusetzen. Besondere Herausforderungen bei dieser Studie waren u. a. die Identifizierung einer geeigneten Mutante, daneben die Selektion von lebenden Pollenkörnern, die keine Spermazellen enthielten, sowie der Nachweis, dass es sich beim verbliebenen Kern im Pollenschlauch nicht um eine Vorläuferzelle von Spermazellen handelt.

Die Ergebnisse wurden kürzlich im Fachjournal „Nature Plants“ veröffentlicht. Publikation: DOI: 10.1038/nplants.2017.79.

Bereits im vergangen Jahr haben Forscher der drei beteiligten Universitäten über eine neue Gruppe von kleinen Proteinen (ENODLs oder ENs) berichtet, die spezifisch im mütterlichen Gewebe vorkommen und für die Spermazellfreisetzung im Eiapparat notwendig sind. Hierbei interagieren so genannte ENODLs mit dem zentralen Rezeptorprotein FERONIA, welches die Kommunikation zwischen ankommendem Pollenschlauch und Eiapparat vermittelt.
Diese Ergebnisse wurden im Fachjournal „Current Biology“ veröffentlicht. Publikation: DOI: 10.1016/j.cub.2016.06.053.

Die erfolgreiche Kooperation mit den internationalen Universitäten wird weiter ausgebaut durch den Austausch von Studierenden und Wissenschaftlern der beteiligten Institute. In einer weiteren Kooperation wird aktuell an der Rolle von kleinen, vom Pollenschlauch und Eiapparat sekretierten Peptiden und deren Rezeptoren geforscht. Hierzu werden sich ab August zwei Doktorandinnen der Peking Universität für ein Jahr an der Universität Regensburg aufhalten und im Gegenzug wird ein Doktorand der Universität Regensburg für mehrere Monate nach Beijing gehen. Ab dem kommenden Wintersemester wird auch Professor Dresselhaus in Beijing Studierende unterrichten. Besonders erfreulich ist dieser produktive Austausch auf internationaler Ebene mit zwei renommierten Instituten an Universitäten in China und USA im Bereich der Nachwuchswissenschaftler.

Ansprechpartner für Medienvertreter:

Prof. Dr. Thomas Dresselhaus
Universität Regensburg
Lehrstuhl für Zellbiologie und Pflanzenbiochemie
Tel.: 0941 943-3016
thomas.dresselhaus@ur.de

Petra Riedl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie