Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spenden ermöglichen Forschung an tödlicher Kinderkrankheit NCL

16.09.2010
NCL ist die Abkürzung für "Neuronale Ceroid Lipofuszinose", eine seltene Stoffwechselkrankheit, die ein zunehmendes Absterben von Nervenzellen zur Folge hat.

NATIONAL CONTEST FOR LIFE NCL – die gemeinützige Stiftung gegen die tödliche Stoffwechselkrankheit NCL finanziert ab sofort an der Medizinischen Fakultät Carl Gustav Carus der TU Dresden ein Doktorandenstipendium im Bereich der Neurologie, um die NCL-Forschung voranzutreiben.

Möglich machte dies der Einsatz zahlreicher Privatpersonen. Den größten Anteil hatten 23 Ultramarathon-Läufer, die sich im Mai innerhalb einer Woche 2.024,5 Kilometer von Berlin nach Rom kämpften und bei diesem Charity-Run eine hohe Geldsumme „erliefen“.

NCL führt in vielen, qualvollen Jahren zum Tod. Aufgrund eines Gendefekts ist der Stoffwechsel in den Nervenzellen gestört; die Zellen können sich nicht reinigen und sterben allmählich ab. Die Kinder entwickeln sich erst normal. Im Vorschulalter bemerken die Eltern Sehschwierigkeiten. Bald können die Kinder nicht mehr so gut laufen und toben wie ihre Altersgenossen. Nach einer oft jahrelangen Ärzte-Odyssee steht dann die Diagnose fest: Erblindung, Verlust der Sprachfähigkeit, Rollstuhl, epileptische Anfälle, ein früher Tod – oft zwischen dem 20. und dem 30. Lebensjahr – aufgrund von NCL.

„Für die Forschung an NCL ist das Stipendium an der TU Dresden ein wichtiger Meilenstein, weil dadurch die dringend not-wendige Grundlage für die zukünftige wissenschaftliche Arbeit an dieser seltenen und tödlichen Erkrankung gelegt werden kann“ unterstreicht Professor Alexander Storch, Leitender Oberarzt der Klinik und Poliklinik für Neurologie am Universitäts-klinikum Carl Gustav Carus und Leiter der mit den NCL-Forschungen befassten Dresdner Arbeitsgruppe.

Empfängerin des NCL-Forschungsstipendiums ist die Diplomchemikerin Xenia Lojewski. Sie untersucht, wie aus Patientenzel-len induzierte pluripotente Stammzellen – also keine embryonalen Stammzellen – hergestellt werden. Erst seit 2006 ist die Technik bekannt, menschliche Hautzellen zu induzierten, pluripotenten Stammzellen (iPS) zu reprogrammieren. Diese iPS gleichen embryonalen Stammzellen, allerdings stammen sie nicht aus befruchteten Eizellen, sondern aus Zellen des jugendli-chen oder erwachsenen Menschen. Damit ist es möglich, Zellen von Patienten mit erblichen Erkrankungen zu gewinnen, die dann in alle Zellen des menschlichen Körpers differenziert werden können.

„So können erstmals Nervenzellen im Reagenzglas hergestellt werden, die denen des Patienten sehr ähnlich sind“, erklärt Xenia Lojewski. Damit erhoffen sich die Wissenschaftler der TU Dresden, NCL zu Grunde liegende Störungen in den Nervenzel-len selbst untersuchen und gegebenenfalls behandeln zu können. Bis heute war dies nicht möglich, da dem Menschen keine Nervenzellen entnommen werden konnten, ohne ihm zu schaden. „Die iPS-Zellen können uns helfen, die Ursachen von NCL und den Krankheitsverlauf besser zu verstehen“, sagt Dr. Frank Stehr, Leiter Forschung der NCL-Stiftung. „Mit dem Wissen, was in den Zellen schief läuft, kann man erst zielorientiert darauf Einfluss nehmen.“ Die Zellen eines einzelnen Patienten reichen bei den Forschungen natürlich nicht aus, daher müssen von mehreren Patienten Hautproben genommen werden, damit man aussagekräftige Ergebnisse erzielen kann.

Neben der Erforschung möglicher Ursachen kann diese innovative Technologie auch als neuartiges Modellsystem verwendet werden. Sobald iPS von Patienten mit NCL hergestellt und daraus Nervenzellen gewonnen sind, können diese verwendet werden, um neuartige Medikamente an patientenspezifischen Nervenzellen zu evaluieren. „Damit erhoffen wir uns Therapie-ansätze, die viel besser an die echte Krankheit angepasst und so hoffentlich deutlich wirksamer und nebenwirkungsärmer sind“, fügt Prof. Storch hinzu. Diese bereits im Vorfeld von klinischen Studien so „nah“ am Patienten ansetzende Forschung verspricht auch einen reduzierten Bedarf an immer noch notwendigen Tierversuchen. Aber eine Zellkultur ist kein vollständi-ger Organismus, daher wird man auch immer nur begrenzt Aussagen treffen können. Mausversuche sind deshalb ergänzend immer noch notwendig. Am Ende stehen dann klinische Studien mit Patienten, die die Wirksamkeit von Therapieansätzen beim Menschen ermitteln.

Die Wissenschaftler aus der Neurologie der TU Dresden sind bei diesem Forschungsprojekt länderübergreifend mit drei weiteren Arbeitsgruppen vernetzt. Neben der Arbeitsgruppe um Prof. Alexander Storch in Dresden sind Prof. Hans Schöler vom Max-Plank-Institut für molekulare Biomedizin in Münster sowie Prof. Susan Cotman und Prof. Kwang-Soo Kim – beide von der Harvard Medical School, Boston, USA – daran beteiligt. Für Prof. Schöler, einem der führenden Stammzellenexperten weltweit, ist das Projekt so bedeutsam, dass er aus eigenen finanziellen Mitteln eine zweite Doktorandenstelle am Max-Planck-Institut in Münster finanziert. „Mit dieser engen Vernetzung können die in den verschiedenen Labors vorhandenen Techniken zusammengeführt und damit ein maximal möglicher Zeitgewinn erreicht werden“, prognostiziert Prof. Storch. Der NCL-Stiftung ist es damit gelungen, zwei neue Arbeitsgruppen für die Erforschung von NCL zu gewinnen - eine in Dresden und eine in Münster.

Die NCL-Stiftung
Die gemeinnützige NCL-Stiftung wurde am 7. August 2002 von Dr. Frank Husemann gegründet, nachdem bei seinem Sohn Tim 2001 im Alter von sechs Jahren NCL diagnostiziert wurde. Zweck der Stiftung ist es, die tödliche Kinderkrankheit NCL mit gezielter Forschungsarbeit zu bekämpfen. Neben der Forschungsförderung und Forschungsinitiierung liegt ein weiterer Schwerpunkt der Stiftungstätigkeit in der Aufklärung von relevanten Ärztegruppen, betroffenen Eltern und der Öffentlichkeit.

Kontakte

NCL-Stiftung
Dr. Frank Stehr
Tel.: +49-(0)40-6966674-0
Fax: +49-(0)40-6966674-69
E-Mail: frank.stehr@ncl-stiftung.de
Universitätsklinikum Carl Gustav Carus Dresden
Klinik und Poliklinik für Neurologie
Prof. Dr. Alexander Storch
Tel.: +49 (0)351 458 2532
Fax: +49 (0)351 458 4352
E-Mail: Alexander.Storch@neuro.med.tu-dresden.de

Holger Ostermeyer | idw
Weitere Informationen:
http://www.neuro.med.tu-dresden.de
http://www.ncl-stiftung.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie