Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Speisepilz zum maßgeschneiderten Biokatalysator

29.11.2013
Freiburger Chemiker klären Struktur eines Enzyms auf, das anspruchsvolle chemische Reaktionen umweltfreundlich umsetzt.

Aromaten sind Kohlenwasserstoffe, die in der chemischen und pharmazeutischen Industrie jedes Jahr im Megatonnenmaßstab eingesetzt werden. Prof. Dr. Dietmar A. Plattner, Dr. Klaus Piontek und Eric Strittmatter vom Institut für Organische Chemie der Universität Freiburg ist es nun gelungen, die Struktur eines Enzyms aufzuklären, das Aromaten selektiv nur mithilfe von Wasserstoffperoxid aktivieren kann.


Struktur und Wirkungsweise von AaeAPO
Quelle: Eric Strittmatter

Die Struktur dient als Basis, um die Funktionsweise des Enzyms auf molekularer Ebene im Detail zu verstehen. In Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftlern vom Internationalen Hochschulinstitut der Universität Dresden in Zittau und von der Hochschule Lausitz in Senftenberg hat das Team die Ergebnisse dieser Arbeiten jetzt in der Fachzeitschrift „Journal of Biological Chemistry“ veröffentlicht. Die Forscher um Plattner hoffen, mit diesem Katalysatorsystem zukünftig eine Alternative zu den oft energie- und abfallintensiven Methoden der Industrie bereitzustellen.

Das Enzym mit dem Namen AaeAPO gehört zur Gruppe der so genannten aromatischen Peroxygenasen, kurz APOs. Es wird aus dem bekannten Speise- und Kulturpilz Agrocybe aegerita, dem Südlichen Ackerling – auch Pioppino genannt – gewonnen. Die biologische Rolle des Enzyms ist noch nicht geklärt: Es dient vermutlich als eine Art „extrazelluläre Leber“ des Pilzes und ist für den Abbau schädlicher Substanzen verantwortlich. AaeAPO kann beispielsweise krebserregende Aromaten wie Methylimidazol umsetzen und deren Giftigkeit und Löslichkeitseigenschaften nachhaltig verändern.

APOs wirken als Katalysatoren bei der chemischen Modifikation von Aromaten durch Wasserstoffperoxid, das heißt, sie machen diese chemische Reaktion möglich. Wasserstoffperoxid, ein aus Alltagsanwendungen bekanntes Bleichmittel, ist günstig herstellbar. Das ist einer der Gründe dafür, dass APOs attraktive Katalysatoren für schwierige chemische Synthesen sind. Zu ihren weiteren positiven Eigenschaften gehören hohe Löslichkeit sowie die Stabilität bei verschiedenen pH- und Temperaturwerten. Zusätzlich weisen APOs einen hohen Grad an Selektivität auf, was bedeutet, dass sie Sauerstoffatome aus Wasserstoffperoxid an genau definierten Stellen im Molekül einbauen. Dabei sind sie den industriell eingesetzten Cytochrom-P450-Monooxygenasen deutlich überlegen. Diese verlieren außerdem als Katalysatoren schneller ihre Enzymaktivität als APOs und funktionieren nur in zellulärer Umgebung, was ihre industrielle Anwendung erschwert.

Die Arbeitsweise von AaeAPO hängt unmittelbar mit seiner Struktur zusammen: Das Enzym besitzt eine für aromatische Substrate, also von AaeAPO umsetzbare Verbindungen, passende Bindungstasche, die nach dem Prinzip eines Spannrings die Substratmoleküle fixiert. Dadurch kann ein in das Enzym eingebettetes Häm-Molekül, bekannt aus dem roten Blutfarbstoff, ein Sauerstoffatom auf den Aromaten übertragen. Dieser Vorgang läuft in wässriger Umgebung und bereits bei Raumtemperatur effizient ab, also unter Bedingungen, bei denen die enzymfreie Reaktion niemals stattfindet. Durch gezielte Modifikation der Bindungstasche können zukünftig die katalytischen Eigenschaften des Enzyms verändert werden, um zum Beispiel das Substratspektrum zu variieren. AaeAPO wird so zum Prototyp einer ganzen Familie maßgeschneiderter Biokatalysatoren, die auf verschiedenen Gebieten eingesetzt werden können.

Weitere Informationen:
http://bioindustrie2021.eu
Originalveröffentlichung:
Klaus Piontek, Eric Strittmatter, René Ullrich, Glenn Gröbe, Marek J. Pecyna, Martin Kluge, Katrin Scheibner, Martin Hofrichter und Dietmar A. Plattner (2013). Structural Basis of Substrate Conversion in a New Aromatic Peroxygenase: P450 Functionality with Benefits. Journal of Biological Chemistry 288 (48). www.jbc.org/content/early/2013/10/14/jbc.M113.514521
Kontakt:
Prof. Dr. Dietmar A. Plattner
Institut für Organische Chemie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203- 6013
Fax: 0761/203- 8714
E-Mail: dietmar.plattner@chemie.uni-freiburg.de
Dr. Klaus Piontek
Institut für Organische Chemie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203- 6036
E-Mail: klaus.piontek@ocbc.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de/
http://www.biorenew.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Krebszellen gegen Chemotherapeutika „immun“ machen
24.08.2017 | Universität Witten/Herdecke

nachricht "Comammox"-Bakterien: Langsam, aber super-effizient
24.08.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ein Feuerwerk der chemischen Forschung

24.08.2017 | Veranstaltungen

US-Spitzenforschung aus erster Hand: Karl Deisseroth spricht beim Neurologiekongress in Leipzig

24.08.2017 | Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eisberge: Mathematisches Modell berechnet Abbruch von Schelfeis

24.08.2017 | Geowissenschaften

Besseres Monitoring der Korallenriffe mit dem HyperDiver

24.08.2017 | Geowissenschaften

Rauch von kanadischen Waldbränden bis nach Europa transportiert

24.08.2017 | Geowissenschaften