Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf den Span gefühlt: Forscher nehmen Mahagonigewächsen den genetischen Fingerabdruck ab

15.04.2011
Mahagoni ist nicht gleich Mahagoni.

Der illegale Handel mit geschützten Arten der wertvollen Tropenhölzer blüht nicht zuletzt, weil Brettern oder fertigen Möbelstücken nicht mehr anzusehen ist, welcher Baum dafür gefällt wurde. Doch künftig könnten kleine Holzstückchen ausreichen, um dies aufzudecken, denn Wissenschaftler des Biodiversität und Klima Forschungszentrums, des Forschungsinstitutes Senckenberg und des französischen Services Géographiques haben eine Möglichkeit gefunden, verschiedene Arten von Mahagonigewächsen anhand von kurzen DNA-Abschnitten zu unterscheiden. Eine Erbgutregion aus dem Zellkern erwies sich dafür als am besten eignet.

Wie die aktuelle Ausgabe des Fachjournals „Molecular Ecology Resources“ berichtet, untersuchte das deutsch-französische Team um Prof. Dr. Alexandra N. Muellner, Biodiversität und Klima Forschungszentrum, Frankfurt am Main, dazu DNA-Stücke von 25 Arten der kommerziell wichtigen Gattung Cedrela, zu denen beispielsweise die Spanische Zeder gehört, und weiterer nahe Verwandter aus der Familie der Mahagonigewächse. Die Botaniker/innen verglichen sechs unterschiedliche Bereiche aus dem Erbgut, das in den Chloroplasten und im Zellkern vorliegt, um einen Gen-Abschnitt zu finden, mit dem sich verschiedene Arten von Mahagonigewächsen identifizieren lassen. Anders als in der aus Krimiserien bekannten DNA-Analyse musste der Baum dafür nicht zum Speicheltest, sondern die DNA wurde kleinen Stücken getrockneter Blätter gewonnen und anschließend die ausgewählten Abschnitte entziffert.

Erbgutabschnitt aus Zellkern ist bestgeeigneter genetischer Fingerabdruck
Das Resultat ist eindeutig, wie Alexandra N. Muellner bestätigt: „Der ITS genannte Abschnitt aus dem Erbgut des Zellkerns zeigt die größten Unterschiede zwischen den Arten. Im Vergleich zu anderen Abschnitten lassen sich damit die meisten Proben zweifelsfrei einer Art zuordnen.“ Die Ergebnisse sind ein weiterer Schritt, um die Artbestimmung von Pflanzen per Abgleich kurzer, charakteristischer Erbgutregionen voranzutreiben. Dieses DNA-Barcoding genannte Verfahren vereinfacht die Artbestimmung, denn selbst aus kleinen Pflanzenproben lässt sich ein definierter Teil der DNA entziffern. Der Abschnitt wird mit vorhandenen Daten verglichen und so eindeutig einer Art zugeordnet. Anders als bei Tieren steckt das Verfahren bei Pflanzen jedoch noch in den Anfängen. Ein Erbgutabschnitt aus den Mitochondrien, den Kraftwerken der Zelle, der bei Tierarten fast standardmäßig als genetische Schlüsselregion herangezogen wird, unterscheidet sich bei verschiedenen Pflanzenarten zu wenig voneinander, um hier praktikabel zu sein.
Eindeutige DNA-Region für Pflanzenidentifizierung bislang umstritten
Zur Identifizierung von Pflanzenarten wurde bisher das Doppelpack von zwei Abschnitten aus dem Erbgut der Chloroplasten, die Regionen „rbcL“ und „matK“ empfohlen. Falls dies zur Artunterscheidung nicht ausreicht, sollte die Hinzunahme eines dritten Markers Gewissheit bringen. Muellner und ihr Team zeigte nun, dass zumindest bei Mahagonigewächsen die einzelne ITS-Region in der Regel genug Informationen zur artspezifischen Unterscheidung liefert. Die Ergebnisse lassen sich jedoch nicht einfach auf alle anderen Pflanzenarten übertragen. Einerseits unterliegt die ITS-Region einer höheren Evolutionsrate als die Chloroplasten-DNA, was den Vergleich korrespondierender Abschnitte sehr entfernt verwandter Arten schwerer macht. Andererseits können in einer Pflanze verschiedene Versionen des ITS-Abschnitts vorliegen.
Artenschutz profitiert vom DNA-Beweis
Fast ein Drittel der weltweit vorkommenden ca. 575 Mahagoniarten stehen bereits auf der Roten Liste der International Union for Conservation of Nature, und diverse Arten unterliegen internationalen Handelsbeschränkungen des Washingtoner Artenschutzabkommens. Der schwunghafte Handel geht indessen weiter, wie unter anderem das Beispiel Peru zeigt, wo 70-90% der Mahagoni-Exporte illegal abgeholzt wurden. Ein DNA-Scan könnte helfen, den Artenschutz stringenter durchzusetzen, wie Alexandra N. Muellner erläutert: „Internationale Zoll- und Handelsbehörden könnten anhand einer Holzlatte bestimmen, um welche Baumart es sich handelt. Der Charme des DNA-Barcoding liegt ja gerade darin, dass man Arten in einem Zustand bestimmen kann, in dem sie sich für das Auge nicht mehr stark unterscheiden – beispielsweise, wenn vom ganzen Baum nur die besagte Holzlatte verfügbar ist.“ Außerdem könnte die Artbestimmung für ökologische Studien eingesetzt werden, unter anderem wenn es darum geht, die Waldstruktur unter dem Einfluss des Klimawandels zu untersuchen (z.B. durch Dürre-Ereignisse erhöhter Totholzanteil). In Zukunft soll die Analyse so verfeinert werden, dass zusätzlich zur Art auch die Herkunftsregion festgestellt werden kann, etwa ob es sich um einen Baum aus Brasilien oder Mexiko handelt. (Sabine Wendler)
Originalveröffentlichung:
Muellner, A.N., Schaefer, H. & Lahaye, R. Evaluation of candidate DNA barcoding loci for economically important timber species of the mahogany family (Meliaceae). Molecular Ecology Resources 11: 450-460.
Für weitere Informationen wenden Sie sich bitte an:
Prof. Dr. Alexandra N. Muellner
Tel.: 069 97075 1158
E-Mail: alexandra.muellner@senckenberg.de
oder
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Sabine Wendler, Pressereferentin
Tel.: 069 7542 1838
E-Mail: sabine.wendler@senckenberg.de
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wechselwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK-F) seit 2008 im Rahmen der hessischen Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren eng mit regionalen, nationalen und internationalen Institutionen aus Wissenschaft, Ressourcen- und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben.

Doris von Eiff | idw
Weitere Informationen:
http://www.bik-f.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz
08.12.2017 | Technische Universität Dresden

nachricht Die Zukunft der grünen Gentechnik
08.12.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie