Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So viel atmet eine einzelne Zelle: elektrochemische Rastermikroskopie entscheidend optimiert

07.05.2013
RUB-Forscher messen Sauerstoffverbrauch individueller Zellen

Wie aktiv eine lebende Zelle ist, lässt sich anhand ihres Sauerstoffverbrauchs ablesen. Die Methode, mit der man diesen Verbrauch bestimmt, haben Bochumer Chemiker nun entscheidend weiter entwickelt. Problematisch war bislang, dass die Messelektrode den Sauerstoffumsatz in der Umgebung der Zelle wesentlich stärker veränderte als die Zelle selbst.


Elektrochemische Rastermikroskopie: Forscher bringen eine Mikroelektrode (grau) in die unmittelbare Nähe der Zelle. An der Elektrode wird Sauerstoff zu Wasser umgesetzt (schwarzer Pfeil); dabei fließen Elektronen durch die Elektrode. Durch Zellatmung (grüner Pfeil) verbraucht die Zelle Sauerstoff und macht der Elektrode Konkurrenz. Zusätzliche Sauerstoffquellen können die Messung stören: Sauerstoff kann aus der umgebenden wässrigen Lösung in den Spalt zwischen Elektrode und Zelle wandern (grauer Pfeil) oder aus der Zelle austreten (blaue Pfeile). Oben links ist die Topographie, also das Höhenprofil, der Zelle gezeigt, oben rechts der gemessene Sauerstoffverbrauch an der Zelloberfläche.
Grafik: Wolfgang Schuhmann

„Das haben wir schon vor 12 Jahren festgestellt“, sagt Prof. Dr. Wolfgang Schuhmann vom Lehrstuhl für Analytische Chemie der Ruhr-Universität „Nun ist es uns endlich gelungen, die Messelektrode zum Beobachter zu machen.“ Gemeinsam mit seinem Team berichtet er in der „International Edition“ der Zeitschrift „Angewandte Chemie“.

Messelektroden präzise positionieren

Zellen brauchen Sauerstoff für verschiedene Stoffwechselvorgänge, etwa um Glukose abzubauen. Um den Verbrauch zu messen, müssen Forscher sehr kleine Signale in einem großen Hintergrundrauschen detektieren. Sie nutzen dazu die elektrochemische Rastermikroskopie, für die sie Elektroden mit einem Durchmesser von fünf Mikrometer in einem Abstand von 200 Nanometer von der Zelle platzieren müssen. Dafür hat das RUB-Team im Lauf der letzten Jahre ein spezielles Verfahren entwickelt, mit dem sich der Abstand der Elektrode zur Zelle präzise kontrollieren lässt.

Den Zellen mit Mikroelektroden Konkurrenz machen

Mit der Elektrode erzeugen die Forscher zunächst Sauerstoff in der wässrigen Umgebung der Zelle; dann messen sie, wie viel die Zelle davon verwertet. Zu diesem Zweck legen sie zu Beginn ein bestimmtes Potenzial an der Elektrode an. Dieses bewirkt, dass dem Wasser in der Zellumgebung Elektronen entzogen werden; es entsteht Sauerstoff. Den Sauerstoff kann die Zelle für ihren Stoffwechsel nutzen; gleichzeitig machen die Forscher ihr aber mit der Mikroelektrode Konkurrenz.
Sie ändern das Potenzial an der Elektrode so, dass sich die Reaktion umkehrt: Sauerstoff wird nun zu Wasser umgesetzt. Die dabei fließenden Elektronen messen die Wissenschaftler mit der Elektrode und erhalten so ein Maß für den Sauerstoffverbrauch in der lokalen Umgebung. Je mehr Sauerstoff die Zelle für ihren Stoffwechsel verbraucht, desto weniger Sauerstoff bleibt für die stromerzeugende Reaktion an der Elektrode. Je geringer also der gemessene Stromfluss, desto stärker die Aktivität der Zelle. Bei diesem Verfahren spricht man vom Redoxkompetitionsmodus.

Schnelle Messung

Bei den bisher eingesetzten Verfahren war der durch die Elektrode erzeugte Sauerstoffverbrauch wesentlich größer als der Verbrauch der Zelle. „Die Messung selbst hat die Sauerstoffkonzentration lokal also stärker verändert als der Zellstoffwechsel“, erklärt Prof. Schuhmann. Entscheidend war es, die Aktivität der Zelle sehr schnell, nachdem der Sauerstoff an der Mikroelektrode erzeugt worden war, zu messen – nämlich nach 20 Millisekunden. Wartet man länger, so entzieht die Elektrode der Zelle Sauerstoff, anstatt den Sauerstoff aus der Umgebung zu verwenden, den die Forscher zuvor künstlich erzeugten. Drei Faktoren waren also maßgeblich für den Erfolg der Bochumer Methode: die sehr genaue Position der Elektroden, der Redoxkompetitionsmodus und die schnelle Messzeit.
Titelaufnahme

M. Nebel, S. Grützke, N. Diab, A. Schulte, W. Schuhmann (2013): Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: the influence of the faradaic tip reaction, Angewandte Chemie International Edition, DOI: 10.1002/anie.201301098

Weitere Informationen

Prof. Dr. Wolfgang Schuhmann, Analytische Chemie – Elektroanalytik & Sensorik, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26200, E-Mail: wolfgang.schuhmann@rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie