Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So kommt der Zucker in die Rübe

08.01.2015

Wie entsteht der hohe Zuckergehalt von Zuckerrüben? Diese bislang ungelöste Frage ist jetzt geklärt: Forschungsteams aus Deutschland haben den Zucker-Transporter entdeckt, der dafür verantwortlich ist. Für die Züchtung verbesserter Sorten ist das ein kräftiger Impuls.

Mit Zuckerrüben (Beta vulgaris) wird ein großer Teil des Weltzuckerbedarfs gedeckt. Die üppigen Knollen sind zudem für die Produktion von Bioethanol als Energiequelle bedeutsam.


Aus Sonne, Kohlendioxid und Wasser wird in grünen Pflanzenblättern der Zucker Saccharose. Zuckerrüben speichern den süßen Stoff in ihrer Knolle.

(Zeichnung: Irina Yurchenko)

„Ursprünglich wurde die Zuckerrübe als Blattgemüse genutzt“ sagt Professor Rainer Hedrich, Pflanzenwissenschaftler von der Universität Würzburg. Doch den Europäern sei es seit dem späten 18. Jahrhundert gelungen, eine wahre Zuckerfabrik aus ihr zu züchten: „Bei unseren Hochleistungszuckerrüben kommen auf zehn Kilogramm Rübe bis zu 2,3 Kilo Zucker.“ Doch bis vor kurzem war unklar, nach welchen Prinzipien die Zuckerspeicherung in den Rüben vor sich geht.

Spezifischen Transporter entdeckt

Diese Frage hat Hedrichs Gruppe jetzt mit Wissenschaftlern der Universitäten Erlangen, Kaiserslautern und Köln sowie mit Teams der KWS Saat AG und der Südzucker AG geklärt: Die Rübenzellen häufen den Zucker in Form von Saccharose in speziellen Saftspeichern an, den so genannten Vakuolen. Dorthin gelangt der süße Stoff über ein Transportprotein namens BvTST2.1, das auf Saccharose spezialisiert ist.

Diesen Transporter haben die Forscher nun entdeckt und molekular charakterisiert: „Unsere neuen Erkenntnisse könnten zu Zuckerrüben, Zuckerrohr oder anderen Pflanzen mit noch höherem Zuckergehalt führen – wenn man züchterisch dafür sorgt, dass die Menge der Transporter in den Pflanzen erhöht ist“, meinen sie. Diese Forschungsergebnisse sind in der renommierten Wissenschaftszeitschrift „Nature Plants“ präsentiert. Finanziell gefördert wurde das Projekt vom Bundesministerium für Bildung und Forschung, BMBF.

Welche Experimente zum Erfolg führten

Wie ist das Forschungsteam zu seinen Erkenntnisse gelangt? Zunächst hat es das Entwicklungsstadium bestimmt, in dem die Rübe auf Zuckerspeicherung schaltet. Es folgte die Ermittlung der Proteine, die in der Speicherphase vermehrt gebildet werden. Mit Genom-Datenbanken ließen sich dann die Gene bestimmen, die als potenzielle Zuckertransporter in Frage kommen.

Dabei schälte sich ein „Hauptverdächtiger“ heraus, das Transportprotein BvTST2.1. Wie aber feststellen, ob dieser Transporter tatsächlich Saccharose in die Vakuole verfrachten kann? Hier war das biophysikalische Fachwissen von Hedrichs Team gefragt: „Wir haben die Tatsache genutzt, dass Blattzellen das Transportprotein der Zuckerrüben-Vakuole nicht herstellen. Also haben wir das Rüben-Transporter-Gen bvtst2.1 in die Blattzellen gebracht, deren Vakuolen isoliert und dann gemessen, ob und wie das Rübenprotein Zucker transportiert“, erklärt der Professor.

Mit der Patch-Clamp-Technik konnten die Forscher zeigen, dass der Rüben-Transporter selektiv Saccharose in die Vakuole leitet und im Gegentausch Protonen aus der Vakuole hinausbefördert. Dieser Kopplung ist es letztendlich zu verdanken, dass sich der Zucker in den Rübenvakuolen anhäufen und dort Spitzenkonzentrationen von 23 Prozent erreichen kann.

Was sich mit dem neuen Wissen anfangen lässt

Um Zuckerrüben im Hinblick auf die Zuckerspeicherung weiter zu verbessern, muss der BvTST2.1-Transporter als nächstes auf den Prüfstand – also in die Zuckerrübe selbst: Im Labor müssen Zuckerrüben hergestellt werden, die unterschiedliche Mengen des Transporters enthalten. Dann gilt es zu beobachten, welche Auswirkungen die Transporter-Dosis auf den Zuckergehalt der Rübe hat.

„Findet man das vermutete Prinzip bestätigt, kann man Rüben auf einen erhöhten Transporter-Gehalt hin züchten“, so Hedrich. Das könnte schließlich eine neue Generation von Rüben liefern, die noch mehr Zucker speichern oder die schon früher im Jahr mit der Zuckerspeicherung loslegen.

„Identification of transporter responsible for sucrose accumulation in sugar beet taproots”, Benjamin Jung, Frank Ludewig, Alexander Schulz, Garvin Meißner, Nicole Wöstefeld, Ulf-Ingo Flügge, Benjamin Pommerrenig, Petra Wirsching, Norbert Sauer, Wolfgang Koch, Frederik Sommer, Timo Mühlhaus, Michael Schroda, Tracey Ann Cuin, Dorothea Graus, Irene Marten, Rainer Hedrich, and H. Ekkehard Neuhaus, Nature Plants, 8. Januar 2015, DOI: 10.1038/nplants.2014.1

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Weitere Informationen:

http://www.bot1.biozentrum.uni-wuerzburg.de/ Zur Homepage von Prof. Hedrich

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

PM des MCC: CO2-Entzug aus Atmosphäre für 1,5-Grad-Ziel unvermeidbar

23.05.2018 | Geowissenschaften

Autonome Schifffahrt: Transdisziplinäre Forschung an der Uni Kiel

23.05.2018 | Informationstechnologie

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics