Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So kommt der Zucker in die Rübe

08.01.2015

Wie entsteht der hohe Zuckergehalt von Zuckerrüben? Diese bislang ungelöste Frage ist jetzt geklärt: Forschungsteams aus Deutschland haben den Zucker-Transporter entdeckt, der dafür verantwortlich ist. Für die Züchtung verbesserter Sorten ist das ein kräftiger Impuls.

Mit Zuckerrüben (Beta vulgaris) wird ein großer Teil des Weltzuckerbedarfs gedeckt. Die üppigen Knollen sind zudem für die Produktion von Bioethanol als Energiequelle bedeutsam.


Aus Sonne, Kohlendioxid und Wasser wird in grünen Pflanzenblättern der Zucker Saccharose. Zuckerrüben speichern den süßen Stoff in ihrer Knolle.

(Zeichnung: Irina Yurchenko)

„Ursprünglich wurde die Zuckerrübe als Blattgemüse genutzt“ sagt Professor Rainer Hedrich, Pflanzenwissenschaftler von der Universität Würzburg. Doch den Europäern sei es seit dem späten 18. Jahrhundert gelungen, eine wahre Zuckerfabrik aus ihr zu züchten: „Bei unseren Hochleistungszuckerrüben kommen auf zehn Kilogramm Rübe bis zu 2,3 Kilo Zucker.“ Doch bis vor kurzem war unklar, nach welchen Prinzipien die Zuckerspeicherung in den Rüben vor sich geht.

Spezifischen Transporter entdeckt

Diese Frage hat Hedrichs Gruppe jetzt mit Wissenschaftlern der Universitäten Erlangen, Kaiserslautern und Köln sowie mit Teams der KWS Saat AG und der Südzucker AG geklärt: Die Rübenzellen häufen den Zucker in Form von Saccharose in speziellen Saftspeichern an, den so genannten Vakuolen. Dorthin gelangt der süße Stoff über ein Transportprotein namens BvTST2.1, das auf Saccharose spezialisiert ist.

Diesen Transporter haben die Forscher nun entdeckt und molekular charakterisiert: „Unsere neuen Erkenntnisse könnten zu Zuckerrüben, Zuckerrohr oder anderen Pflanzen mit noch höherem Zuckergehalt führen – wenn man züchterisch dafür sorgt, dass die Menge der Transporter in den Pflanzen erhöht ist“, meinen sie. Diese Forschungsergebnisse sind in der renommierten Wissenschaftszeitschrift „Nature Plants“ präsentiert. Finanziell gefördert wurde das Projekt vom Bundesministerium für Bildung und Forschung, BMBF.

Welche Experimente zum Erfolg führten

Wie ist das Forschungsteam zu seinen Erkenntnisse gelangt? Zunächst hat es das Entwicklungsstadium bestimmt, in dem die Rübe auf Zuckerspeicherung schaltet. Es folgte die Ermittlung der Proteine, die in der Speicherphase vermehrt gebildet werden. Mit Genom-Datenbanken ließen sich dann die Gene bestimmen, die als potenzielle Zuckertransporter in Frage kommen.

Dabei schälte sich ein „Hauptverdächtiger“ heraus, das Transportprotein BvTST2.1. Wie aber feststellen, ob dieser Transporter tatsächlich Saccharose in die Vakuole verfrachten kann? Hier war das biophysikalische Fachwissen von Hedrichs Team gefragt: „Wir haben die Tatsache genutzt, dass Blattzellen das Transportprotein der Zuckerrüben-Vakuole nicht herstellen. Also haben wir das Rüben-Transporter-Gen bvtst2.1 in die Blattzellen gebracht, deren Vakuolen isoliert und dann gemessen, ob und wie das Rübenprotein Zucker transportiert“, erklärt der Professor.

Mit der Patch-Clamp-Technik konnten die Forscher zeigen, dass der Rüben-Transporter selektiv Saccharose in die Vakuole leitet und im Gegentausch Protonen aus der Vakuole hinausbefördert. Dieser Kopplung ist es letztendlich zu verdanken, dass sich der Zucker in den Rübenvakuolen anhäufen und dort Spitzenkonzentrationen von 23 Prozent erreichen kann.

Was sich mit dem neuen Wissen anfangen lässt

Um Zuckerrüben im Hinblick auf die Zuckerspeicherung weiter zu verbessern, muss der BvTST2.1-Transporter als nächstes auf den Prüfstand – also in die Zuckerrübe selbst: Im Labor müssen Zuckerrüben hergestellt werden, die unterschiedliche Mengen des Transporters enthalten. Dann gilt es zu beobachten, welche Auswirkungen die Transporter-Dosis auf den Zuckergehalt der Rübe hat.

„Findet man das vermutete Prinzip bestätigt, kann man Rüben auf einen erhöhten Transporter-Gehalt hin züchten“, so Hedrich. Das könnte schließlich eine neue Generation von Rüben liefern, die noch mehr Zucker speichern oder die schon früher im Jahr mit der Zuckerspeicherung loslegen.

„Identification of transporter responsible for sucrose accumulation in sugar beet taproots”, Benjamin Jung, Frank Ludewig, Alexander Schulz, Garvin Meißner, Nicole Wöstefeld, Ulf-Ingo Flügge, Benjamin Pommerrenig, Petra Wirsching, Norbert Sauer, Wolfgang Koch, Frederik Sommer, Timo Mühlhaus, Michael Schroda, Tracey Ann Cuin, Dorothea Graus, Irene Marten, Rainer Hedrich, and H. Ekkehard Neuhaus, Nature Plants, 8. Januar 2015, DOI: 10.1038/nplants.2014.1

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Weitere Informationen:

http://www.bot1.biozentrum.uni-wuerzburg.de/ Zur Homepage von Prof. Hedrich

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie

Erste "Rote Liste" gefährdeter Lebensräume in Europa

16.01.2017 | Ökologie Umwelt- Naturschutz