Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So bleibt das Gehirn aufnahmefähig: Forscher untersuchen Rolle von Kanalprotein beim Lernen

09.01.2013
PLoS ONE: Pannexin1 ist entscheidend für Gedächtnis und Orientierung

Das Kanalprotein Pannexin1 hält Nervenzellen flexibel und somit das Gehirn aufnahmefähig für neues Wissen. Gemeinsam mit Kollegen aus Kanada und Amerika beschreiben Forscher der Ruhr-Universität Bochum um Juniorprofessorin Dr. Nora Prochnow aus der Abteilung für Molekulare Hirnforschung diese Ergebnisse in PLoS ONE. Mäuse, die in gedächtnisrelevanten Hirnstrukturen kein Pannexin1 besaßen, zeigten in der Studie Autismus-ähnliche Symptome. Ihren Nervenzellen fehlte es an synaptischer Plastizität, also an der Fähigkeit nutzungsabhängig neue Kontakte zu knüpfen bzw. alte Kontakte aufzugeben.


Mikroskopische Aufnahme des Hippocampus: Die blauen Kurven zeigen die Langzeitpotenzierung bei Mäusen mit (links) und ohne Pannexin1 (rechts). Gehirne von Tieren ohne das Kanalprotein reagieren auf kleine Reize besonders empfindlich, wie der große Unterschied zwischen hell- und dunkelblauer Kurve zeigt. Die Daten basieren auf Originalmessungen der Studie.
Bild: Nora Prochnow

Pannexine sind zahlreich im zentralen Nervensystem von Wirbeltieren

Pannexine durchspannen die Zellmembran von Wirbeltieren und bilden besonders großporige Kanäle. Sie sind durchlässig für bestimmte Signalstoffe, etwa das Energiespeichermolekül ATP (Adenosintriphosphat). Der bekannteste Vertreter ist Pannexin1, das zahlreich in Gehirn und Rückenmark vorkommt, unter anderem im Hippocampus – einer Gehirnstruktur, die entscheidend für das Langzeitgedächtnis ist. Fehlfunktionen der Pannexine spielen bei der Entstehung von Epilepsien und Schlaganfällen eine Rolle.

Kein Spielraum mehr bei der Langzeitpotenzierung

Das Forscherteam untersuchte Mäuse, denen das Gen für Pannexin1 fehlte. Mit Zellableitungen an Hirnschnitten analysierten sie die Langzeitpotenzierung im Hippocampus. Üblicherweise kommt es zur Langzeitpotenzierung, wenn sich neue Gedächtnisinhalte bilden – die Kontakte zwischen den Nervenzellen werden gestärkt, sie kommunizieren vermehrt miteinander. Bei Mäusen ohne Pannexin1 setzte die Langzeitpotenzierung früher ein und war andauernder als bei Mäusen mit Pannexin1. „Das sieht auf den ersten Blick wie ein Zugewinn an Langzeitgedächtnis aus“, sagt Nora Prochnow. „Aber die genaue Analyse zeigt, dass es keinen Spielraum mehr nach oben gab.“ Durch das Fehlen von Pannexin1 war die Zellkommunikation generell so sehr verstärkt, dass eine weitere Verstärkung durch Lernen neuen Wissens nicht mehr möglich war. Die synaptische Plastizität war also stark eingeschränkt. „Die Plastizität ist essenziell für Lernprozesse im Gehirn“, erklärt Nora Prochnow. „Sie hilft, Inhalte zu sortieren, zu behalten oder auch im positiven Sinne zu vergessen, um Platz für neue Inhalte zu schaffen.“

Autismus-ähnliches Verhalten ohne Pannexin1

Das Fehlen von Pannexin1 wirkte sich auch auf das Verhalten aus: Beim Lösen einfacher Probleme waren die Tiere schnell inhaltlich überfordert, ihre räumliche Orientierung war eingeschränkt, die Aufmerksamkeit gestört und es konnte zu epileptischen Anfällen kommen. „Die Verhaltensmuster erinnern an Autismus. Wir sollten den Pannexin1-Kanal also auch im Hinblick auf die Therapie solcher Erkrankungen genauer in Betracht ziehen“, sagt die Bochumer Neurobiologin.

Theorie: Feedback-Regulation läuft ohne Pannexin1 aus dem Ruder

Laut Theorie der Wissenschaftler mangelt es den Nervenzellen ohne Pannexin1 an einem Feedback-Mechanismus. Normalerweise setzt das Kanalprotein ATP frei, welches an spezielle Rezeptoren andockt und so die Ausschüttung des Botenstoffes Glutamat mindert. Ohne Pannexin1 wird vermehrt Glutamat ausgeschüttet, was zu einer starken Langzeitpotenzierung führt. Dadurch gerät die Zelle aus dem dynamischen Gleichgewicht, das sie für effiziente Lernprozesse braucht.

Titelaufnahme

N. Prochnow, A. Abdulazim, S. Kurtenbach, V. Wildförster, G. Dvoriantchikova , J. Hanske, E. Petrasch-Parwez, V.I. Shestopalov, R. Dermietzel, D. Manahan-Vaughan, G. Zoidl (2012): Pannexin1 stabilizes synaptic plasticity and is needed for learning, PLoS ONE , DOI: 10.1371/journal.pone.0051767

Weitere Informationen

Prof. Dr. Nora Prochnow, Abteilung für Molekulare Hirnforschung, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24406, E-Mail: Nora.Prochnow@ruhr-uni-bochum.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften