Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Snapshot reveals details about photosynthesis

09.11.2012
Together with a large international research team, Johannes Messinger of Umeå University in Sweden has taken another step toward an understanding of photosynthesis and developing artificial photosynthesis.

With a combination of a x-ray free-electron laser and spectroscopy, the team has managed to see the electronic structure of a manganese complex, a chemical compound related to how photosynthesis splits water.


Caption: Ultra-short x-ray pulse striking molecules containing manganese. Illustration: Greg Stewart, National Accelerator Laboratory vid Stanford University

The experiments used the Linac Coherent Light Source (LCLS), which is a free-electron x-ray laser facility at Stanford University in the US. The wavelength of the laser is roughly the same as the breadth of an atom, and each pulse of light lasts 50 femtoseconds (10-15). This is an extremely short interval of time: there are more femtoseconds in one second than there are seconds in a person’s life. Such extremely short wavelengths and short light pulses constitute ideal conditions for imaging chemical reactions with atomic resolution at room temperature while the chemical reactions are ongoing.

The research group has previously used LCLS to perform structural analyses of isolated photosynthesis complexes from plants’ photosystem II at room temperature. Now the group has combined the method with spectroscopy and is the first team to succeed in seeing at LCLS the electronic structure of a manganese complex similar to that found in photosystem II. Manganese is a transitional metal that, together with calcium and oxygen, forms the water-splitting catalyst in photosystem II.

A very simple example of a spectrometer is a prism, which separates sunlight into all the colors of the rainbow. The spectrometer used in this study functions in a similar manner, but with a group of 16 specialized crystals that diffract the x-rays emitted from the sample in resonse of being excited by an x-ray pulse onto a detector array.

To the delight of the scientists, the manganese compounds remained intact long enough for them to observe detailed information about the electronic structure before the compounds were destroyed by the very intense X-ray laser beam.

“Having both structural information and spectroscopic information means that we can much better understand how the structural changes of the whole complex and the chemical changes on the active surface of the catalysts work together to enable the enzymes to perform complex chemical reactions at room temperature,” says Johannes Messinger, professor at the Department of Chemistry at Umeå University.

The chemical reaction the research group aims to understand is the splitting of water in photosystem II, as this understanding is also key for developing artificial photosynthesis– that is, for building devices for producing hydrogen from sunlight and water. To be able to exploit sunlight for producing fuels that can be stored and the used when needed would help solve the world’s ever-more acute energy problems.

The new research findings are being published in the highly regarded journal Proceedings of the National Academy of Sciences, PNAS.

Two major research projects at Umeå University are focusing on the development of artificial photosynthesis by imitating plants’ very successful way of exploiting solar energy. Both projects (“solar fuels” and “artificial leaf”) are directed by Johannes Messinger, professor at the Department of Chemistry at Umeå University.

Original publication:
Alonso-Mori Roberto, et. al: Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. PNAS, November 5 2012, doi:10.1073/pnas.1211384109
For more information, please contact:
Johannes Messinger
Telephone: phone: +46 (0)90-786 59 33
E-mail: johannes.messinger@chem.umu.se

Ingrid Söderbergh | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

Wenn jemand ein liegengebliebenes Auto alleine schiebt, gibt es einen bestimmten Effekt. Wenn eine zweite Person hilft, ist das Ergebnis die Summe der Kräfte der beiden. Wenn zwei kleine Teilchen allerdings ein weiteres kleines Teilchen anschieben, ist der daraus resultierende Effekt nicht notwendigerweise die Summe ihrer Kräfte. Eine kürzlich in Nature Communications veröffentlichte Studie hat diesen merkwürdigen Effekt beschrieben, den Wissenschaftler als „Vielteilchen-Effekt“ bezeichnen.

 

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Winzige Mikroroboter, die Wasser reinigen können

Forscher des Max-Planck-Institutes Stuttgart haben winzige „Mikroroboter“ mit Eigenantrieb entwickelt, die Blei aus kontaminiertem Wasser entfernen oder organische Verschmutzungen abbauen können.

In Zusammenarbeit mit Kollegen in Barcelona und Singapur verwendete die Gruppe von Samuel Sánchez Graphenoxid zur Herstellung ihrer Motoren im Mikromaßstab. D

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: Bewegungen in der lebenden Zelle beobachten

Prinzipien der statistischen Thermodynamik: Forscher entwickeln neue Untersuchungsmethode

Ein Forscherteam aus Deutschland, den Niederlanden und den USA hat eine neue Methode entwickelt, mit der sich Bewegungsprozesse in lebenden Zellen nach ihrem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2016: Diabetes schädigt das Herzkreislauf-System

02.05.2016 | Veranstaltungen

Internationale Bunsen-Tagung erstmals an Uni Rostock

02.05.2016 | Veranstaltungen

VDE|DGBMT veranstaltet Tagung zur patientennahen mobilen Diagnostik POCT

28.04.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Industrielle Förderanlagen effizient und einfach umbauen

02.05.2016 | Informationstechnologie

Diabetes Kongress 2016: Diabetes schädigt das Herzkreislauf-System

02.05.2016 | Veranstaltungsnachrichten

2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

02.05.2016 | Physik Astronomie