Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Skelett der Chromosomen

26.08.2013
IMP-Forscher entdecken stabilisierende Funktion von Cohesin

Jan-Michael Peters und sein Team am Wiener Forschungsinstitut für Molekulare Pathologie (IMP) konnten nachweisen, dass Chromosomen eine Art Skelett besitzen. Die molekulare Stütze ist aus Cohesin-Proteinen aufgebaut. In der aktuellen Ausgabe des Wissenschaftsjournals NATURE beschreiben die Forscher ihre Entdeckung.


Grafische bearbeitete fluoreszenzmikroskopische Aufnahme von Zellkernen ohne Wapl-Funktion, in denen das Kohesin “Vermicelli”-Strukturen bildet. Die Zellkerne wurden nachträglich eingefärbt und unterschiedlich skaliert. IMP

In jeder Zelle des menschlichen Körpers ist eine gesamte Ausgabe der Erbinformation enthalten, abgespeichert in Form von DNA. Etwa dreieinhalb Meter dieses fadenförmigen Moleküls finden im Zellkern Platz, dessen Durchmesser jedoch nur einen hundertstel Millimeter beträgt. Proportional vergrößert entspräche das einem Fußball, in dem ein 150 Kilometer langer Strang verstaut werden muss. Wie die Zelle diese Verpackungsaufgabe löst, verstehen Wissenschaftler bisher nur sehr wenig.

Zellen als Verpackungskünstler

Relativ gut untersucht sind die Histon-Proteine, um die sich die DNA wie um eine Spule legt und platzsparend aufwickelt. Mit dieser Art der Verpackung beschäftigt sich eine eigene Disziplin, die Epigenetik. Doch auch einfache Organismen ohne Histone müssen ihr Erbgut stark komprimieren, und auch in menschlichen Zellen können die Histone die DNA vermutlich alleine nicht verpacken.

Eine Arbeitsgruppe um IMP-Direktor Jan-Michael Peters konnte nun nachweisen, dass ein Protein-Komplex namens Cohesin wesentlich dazu beiträgt, DNA in einer kompakten Form zu stabilisieren. Cohesin ist evolutionär sehr alt und findet sich bereits in Bakterien, die noch ohne Zellkern auskommen. Es könnte also eine sehr ursprüngliche Funktion bei der Strukturierung der DNA haben.

Den Zellbiologen ist Cohesin bereits bekannt. Der Komplex ist für die korrekte Aufteilung der Schwesterchromatiden bei der Zellteilung mitverantwortlich. Seine Untereinheiten bilden dabei einen molekularen Ring, der die zuvor verdoppelten Chromosomen so lange umschließt, bis der exakte Zeitpunkt der Trennung gekommen ist. Die Struktur und die Funktion des Cohesin-Komplexes bei der Zellteilung wurden erstmals 1997 am IMP entdeckt und seitdem genauer untersucht.

Dass die Architektur der Chromosomen auch zwischen den Zellteilungen auf Cohesin angewiesen ist, war bisher nicht bekannt und wurde nun in einem indirekten Verfahren nachgewiesen. Der Biologe Antonio Tedeschi aus dem Team von Jan-Michael Peters untersuchte Zellen, in denen das Protein Wapl experimentell stillgelegt worden war. Dieses Molekül kontrolliert, wie eng sich Cohesin mit DNA verbindet. Fehlt Wapl, so ist die Bindung von Cohesin an DNA ungewöhnlich stabil. Als Folge davon können diese Zellen ihre Gene nicht zum richtigen Zeitpunkt ablesen und sich nicht teilen.

Vermicelli stützen Chromosomen

Bei der mikroskopischen Analyse dieser Zellen entdeckte Tedeschi in den Zellkernen lange, fadenförmige Strukturen aus Cohesin, die er „Vermicelli“ taufte (italienisch für ‚kleine Würmer’). Jedem Chromosom ließ sich einer dieser Fäden zuordnen. Daraus schließen die Forscher, dass Chromosomen eine Art Skelett besitzen, das im Wesentlichen aus Cohesin besteht.

„Wir nehmen an, dass Cohesin für die Chromosomen eine ähnliche Funktion hat wie die Knochen für den Bewegungsapparat“, meint Jan-Michael Peters. „Die Stabilität unseres Körpers hängt, wenn auch indirekt, vermutlich ebenso vom Cohesin-Skelett der Chromosomen ab wie vom knöchernen Skelett.“

Wie sehr wir auf die einwandfreie Funktion von Cohesin angewiesen sind, wird bei geringsten Schädigungen des Systems offensichtlich. Einige seltene Erbkrankheiten werden mit Mutationen im Cohesin-Gen in Verbindung gebracht. Die fehlerhafte Struktur des Moleküls führt zu gravierenden Entwicklungsstörungen und starken gesundheitlichen Einschränkungen. Derzeit stehen jedoch noch keine kausalen Therapieoptionen zur Verfügung.

Originalpublikation: Wapl is an essential regulator of chromatin structure and chromosome segregation. Antonio Tedeschi et al. Doi: 10.1038/nature12471

Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.
Kontakt
Dr. Heidemarie Hurtl
IMP Communications
Dr. Bohr-Gasse 7
A-1030 Wien
Tel.: +43 (0)1 79730 3625
Mobil: +43 (0)664/8247910
hurtl@imp.ac.at
Wissenschaftlicher Kontakt
Dr. Jan-Michael Peters
Jan-michael.peters@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie