Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Simultantests zeigen spezifische Wirkungen der Sirtuine

02.09.2013
Einem Forschungsteam um Prof. Dr. Clemens Steegborn an der Universität Bayreuth ist der Nachweis gelungen, dass die sieben im menschlichen Organismus vorkommenden Sirtuine sich hinsichtlich der Proteine, auf die sie eine deacetylierende Wirkung haben, deutlich unterscheiden.

So gibt es im menschlichen Organismus relativ wenige Proteine, auf die verschiedene Sirtuine die gleiche deacetylierende Wirkung ausüben. Über ihre Erkenntnisse, die sie in Simultantests an mehr als 6.800 Proteinacetylierungsstellen erzielt haben, berichten die Wissenschaftler in der aktuellen Ausgabe des Wissenschaftsmagazins "Nature Communications".


Die Grafik zeigt ein Protein, das die Forschungsgruppe um Prof. Dr. Clemens Steegborn als Sirt1-Substrat identifiziert hat. Es ist ein DNA-bindendes Protein, die DNA ist orange dargestellt. Bei der Deacetylierungsstelle handelt es sich um den einzelnen grauen Strang rechts oben. Grafik: Prof. Dr. Clemens Steegborn; zur Veröffentlichung frei.

Sirtuine sind Enzyme, die insbesondere die Funktion haben, Stoffwechsel- und Alterungsprozesse zu steuern. Sie tun dies, indem sie an ausgewählten Stellen lebenswichtiger Proteine Acetylgruppen abspalten. Diese Deacetylierung hat eine Signalwirkung für zahlreiche Vorgänge in lebenden Zellen, beispielsweise für die Erzeugung neuer Proteine aufgrund genetischer Informationen oder für den Abbau von Nährstoffen. Im Organismus des Menschen lassen sich sieben verschiedene Sirtuine unterscheiden, sie werden in der Forschung als "Sirt1" bis "Sirt7" bezeichnet.

Ihre Wirkungsweise durch pharmakologische Wirkstoffe zielgenau zu fördern oder auch zu hemmen, ist derzeit noch ein visionäres Ziel. Doch weltweit, und unter der Leitung von Prof. Dr. Clemens Steegborn auch an der Universität Bayreuth, arbeiten Forschungsgruppen aus Biochemie und Biomedizin darauf hin, diese Vision Wirklichkeit werden zu lassen.

Breit angelegte Simultantests mit Peptidarrays:
Zuverlässige Rückschlüsse auf Prozesse im menschlichen Organismus
Um geeignete Wirkstoffe entwickeln zu können, sind zunächst einmal detailliertere Kenntnisse über die Wirkungsweise von Sirtuinen erforderlich. Insbesondere muss in Bezug auf jedes der Sirtuine 1 bis 7 geklärt werden, auf welche Proteine es eine deacetylierende Wirkung ausübt. Gibt es im menschlichen Organismus eine große Anzahl von Proteinen, die durch mehrere Sirtuine deacetyliert werden? Oder gibt es nur wenige solcher Proteine, weil jedes Sirtuin eine weitgehend spezifische Wirkung hat?

Diese grundsätzliche Frage konnten die Forscher, die in "Nature Communications" über ihre Forschungsergebnisse berichten, jetzt definitiv beantworten. Sie haben mehr als 6.800 Anheftungsstellen für Acetylgruppen in Proteinen, die den Sirtuinen 1 bis 7 als "Angriffsflächen" dienen können, zeitgleich daraufhin untersucht, durch welche Sirtuine sie tatsächlich deacetyliert werden. Dabei wurden nicht die vollständigen Proteinmoleküle verwendet, sondern nur die acetylierten Abschnitte dieser Proteine. Es handelt sich hierbei um Peptide, die aus den im Menschen tatsächlich vorkommenden Proteinen stammen, so dass die Tests zuverlässige Rückschlüsse auf die deacetylierende Wirkung der Proteine im menschlichen Organismus zulassen.

Bei diesen breit angelegten Simultantests kamen spezielle Peptidarrays zum Einsatz, die eine Forschungsgruppe unter der Leitung von Prof. Dr. Mike Schutkowski an der Martin-Luther-Universität Halle-Wittenberg entwickelt hat. Es handelt sich dabei um Mikrochips, auf denen mehr als 6800 Proteinabschnitte auf engstem Raum Platz finden. Die Forscher haben die Oberflächen dieser Chips mit den Sirtuinen 1 bis 7 in Kontakt gebracht. So konnten sie in kürzester Zeit feststellen, auf welche Proteine die Sirtuine jeweils eine deacetylierende Wirkung haben.

Spezifische Substrate der sieben Sirtuine:
"Eine Ermutigung für die weitere biomedizinische Forschung an Sirtuinen"
Das Ergebnis war überraschend. Jedes Sirtuin im menschlichen Organismus übt eine deacetylierende Wirkung auf Proteine aus, von denen die meisten durch kein anderes Sirtuin derart stark verändert werden. Oder anders ausgedrückt: Jedes der Sirtuine 1 bis 7 hat seine spezifischen Substrate. So konnten die Forscher beispielsweise bestätigen, dass Malatdehydrogenase – ein für den Stoffwechsel unentbehrliches Enzym – allein durch Sirt 3 deacetyliert wird. Andererseits haben sie aber auch entdeckt, dass Peroxiredoxin 1 – ein Enzym, das in der Zelle den Abbau von giftigem Wasserstoffperoxid fördert – sowohl durch Sirt1 als auch durch Sirt5 deacetyliert wird, also ein Substrat beider Sirtuine sein kann.

"Insgesamt gesehen, sind die Erkenntnisse, die wir mithilfe unserer Simultantests erzielen konnten, eine Ermutigung für die weitere biomedizinische Forschung an Sirtuinen", erklärt Prof. Steegborn. "Denn wenn sich die Sirtuine hinsichtlich ihrer Wirkungen relativ klar unterscheiden lassen, sinkt tendenziell das Risiko, dass Substanzen, die ein Sirtuin aktivieren oder hemmen, unerwünschte Nebenwirkungen erzeugen. Vor allem aber sind die Deacetylierungs-Daten, die wir mithilfe der Peptidarrays gewonnen haben, eine Fundgrube für die weitere Sirtuinforschung. Wann immer es darum geht, einen sirtuingesteuerten Stoffwechsel- oder Alterungsprozess durch pharmakologische Wirkstoffe gezielt zu beeinflussen, wissen wir jetzt genauer, wo diese Wirkstoffe ansetzen müssen: bei genau demjenigen Sirtuin, das den jeweiligen Prozess durch Deacetylierung eines Proteins auslöst oder in Gang hält."

Veröffentlichung:

David Rauh, Frank Fischer, Melanie Gertz, Mahadevan Lakshminarasimhan, Tim Bergbrede, Firouzeh Aladini, Chistian Kambach, Christisan F.W. Becker, Christian F.W. Becker, Johannes Zerweck, Mike Schutkowski and Clemens Steegborn,
An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms,

in: Nature Communications, Published 02 September 2013, DOI: 10.1038/ncomms3327

Ansprechpartner:

Prof. Dr. Clemens Steegborn
Lehrstuhl für Biochemie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55 7830
E-Mail: clemens.steegborn@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops