Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Simultantests zeigen spezifische Wirkungen der Sirtuine

02.09.2013
Einem Forschungsteam um Prof. Dr. Clemens Steegborn an der Universität Bayreuth ist der Nachweis gelungen, dass die sieben im menschlichen Organismus vorkommenden Sirtuine sich hinsichtlich der Proteine, auf die sie eine deacetylierende Wirkung haben, deutlich unterscheiden.

So gibt es im menschlichen Organismus relativ wenige Proteine, auf die verschiedene Sirtuine die gleiche deacetylierende Wirkung ausüben. Über ihre Erkenntnisse, die sie in Simultantests an mehr als 6.800 Proteinacetylierungsstellen erzielt haben, berichten die Wissenschaftler in der aktuellen Ausgabe des Wissenschaftsmagazins "Nature Communications".


Die Grafik zeigt ein Protein, das die Forschungsgruppe um Prof. Dr. Clemens Steegborn als Sirt1-Substrat identifiziert hat. Es ist ein DNA-bindendes Protein, die DNA ist orange dargestellt. Bei der Deacetylierungsstelle handelt es sich um den einzelnen grauen Strang rechts oben. Grafik: Prof. Dr. Clemens Steegborn; zur Veröffentlichung frei.

Sirtuine sind Enzyme, die insbesondere die Funktion haben, Stoffwechsel- und Alterungsprozesse zu steuern. Sie tun dies, indem sie an ausgewählten Stellen lebenswichtiger Proteine Acetylgruppen abspalten. Diese Deacetylierung hat eine Signalwirkung für zahlreiche Vorgänge in lebenden Zellen, beispielsweise für die Erzeugung neuer Proteine aufgrund genetischer Informationen oder für den Abbau von Nährstoffen. Im Organismus des Menschen lassen sich sieben verschiedene Sirtuine unterscheiden, sie werden in der Forschung als "Sirt1" bis "Sirt7" bezeichnet.

Ihre Wirkungsweise durch pharmakologische Wirkstoffe zielgenau zu fördern oder auch zu hemmen, ist derzeit noch ein visionäres Ziel. Doch weltweit, und unter der Leitung von Prof. Dr. Clemens Steegborn auch an der Universität Bayreuth, arbeiten Forschungsgruppen aus Biochemie und Biomedizin darauf hin, diese Vision Wirklichkeit werden zu lassen.

Breit angelegte Simultantests mit Peptidarrays:
Zuverlässige Rückschlüsse auf Prozesse im menschlichen Organismus
Um geeignete Wirkstoffe entwickeln zu können, sind zunächst einmal detailliertere Kenntnisse über die Wirkungsweise von Sirtuinen erforderlich. Insbesondere muss in Bezug auf jedes der Sirtuine 1 bis 7 geklärt werden, auf welche Proteine es eine deacetylierende Wirkung ausübt. Gibt es im menschlichen Organismus eine große Anzahl von Proteinen, die durch mehrere Sirtuine deacetyliert werden? Oder gibt es nur wenige solcher Proteine, weil jedes Sirtuin eine weitgehend spezifische Wirkung hat?

Diese grundsätzliche Frage konnten die Forscher, die in "Nature Communications" über ihre Forschungsergebnisse berichten, jetzt definitiv beantworten. Sie haben mehr als 6.800 Anheftungsstellen für Acetylgruppen in Proteinen, die den Sirtuinen 1 bis 7 als "Angriffsflächen" dienen können, zeitgleich daraufhin untersucht, durch welche Sirtuine sie tatsächlich deacetyliert werden. Dabei wurden nicht die vollständigen Proteinmoleküle verwendet, sondern nur die acetylierten Abschnitte dieser Proteine. Es handelt sich hierbei um Peptide, die aus den im Menschen tatsächlich vorkommenden Proteinen stammen, so dass die Tests zuverlässige Rückschlüsse auf die deacetylierende Wirkung der Proteine im menschlichen Organismus zulassen.

Bei diesen breit angelegten Simultantests kamen spezielle Peptidarrays zum Einsatz, die eine Forschungsgruppe unter der Leitung von Prof. Dr. Mike Schutkowski an der Martin-Luther-Universität Halle-Wittenberg entwickelt hat. Es handelt sich dabei um Mikrochips, auf denen mehr als 6800 Proteinabschnitte auf engstem Raum Platz finden. Die Forscher haben die Oberflächen dieser Chips mit den Sirtuinen 1 bis 7 in Kontakt gebracht. So konnten sie in kürzester Zeit feststellen, auf welche Proteine die Sirtuine jeweils eine deacetylierende Wirkung haben.

Spezifische Substrate der sieben Sirtuine:
"Eine Ermutigung für die weitere biomedizinische Forschung an Sirtuinen"
Das Ergebnis war überraschend. Jedes Sirtuin im menschlichen Organismus übt eine deacetylierende Wirkung auf Proteine aus, von denen die meisten durch kein anderes Sirtuin derart stark verändert werden. Oder anders ausgedrückt: Jedes der Sirtuine 1 bis 7 hat seine spezifischen Substrate. So konnten die Forscher beispielsweise bestätigen, dass Malatdehydrogenase – ein für den Stoffwechsel unentbehrliches Enzym – allein durch Sirt 3 deacetyliert wird. Andererseits haben sie aber auch entdeckt, dass Peroxiredoxin 1 – ein Enzym, das in der Zelle den Abbau von giftigem Wasserstoffperoxid fördert – sowohl durch Sirt1 als auch durch Sirt5 deacetyliert wird, also ein Substrat beider Sirtuine sein kann.

"Insgesamt gesehen, sind die Erkenntnisse, die wir mithilfe unserer Simultantests erzielen konnten, eine Ermutigung für die weitere biomedizinische Forschung an Sirtuinen", erklärt Prof. Steegborn. "Denn wenn sich die Sirtuine hinsichtlich ihrer Wirkungen relativ klar unterscheiden lassen, sinkt tendenziell das Risiko, dass Substanzen, die ein Sirtuin aktivieren oder hemmen, unerwünschte Nebenwirkungen erzeugen. Vor allem aber sind die Deacetylierungs-Daten, die wir mithilfe der Peptidarrays gewonnen haben, eine Fundgrube für die weitere Sirtuinforschung. Wann immer es darum geht, einen sirtuingesteuerten Stoffwechsel- oder Alterungsprozess durch pharmakologische Wirkstoffe gezielt zu beeinflussen, wissen wir jetzt genauer, wo diese Wirkstoffe ansetzen müssen: bei genau demjenigen Sirtuin, das den jeweiligen Prozess durch Deacetylierung eines Proteins auslöst oder in Gang hält."

Veröffentlichung:

David Rauh, Frank Fischer, Melanie Gertz, Mahadevan Lakshminarasimhan, Tim Bergbrede, Firouzeh Aladini, Chistian Kambach, Christisan F.W. Becker, Christian F.W. Becker, Johannes Zerweck, Mike Schutkowski and Clemens Steegborn,
An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms,

in: Nature Communications, Published 02 September 2013, DOI: 10.1038/ncomms3327

Ansprechpartner:

Prof. Dr. Clemens Steegborn
Lehrstuhl für Biochemie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55 7830
E-Mail: clemens.steegborn@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie