Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signalübertragung zielgenau steuern: Neue Erkenntnisse für künftige Therapieansätze

23.08.2016

Der Botenstoff cAMP spielt eine Schlüsselrolle bei zahlreichen Stoffwechselprozessen des Menschen. Dem Ziel, die Entstehung dieses Botenstoffs möglichst passgenau zu steuern, sind Wissenschaftler aus den USA und Deutschland jetzt einen entscheidenden Schritt nähergekommen: Sie entdeckten, dass ein Molekül namens „LRE1“ einen bestimmten Weg der cAMP-Entstehung in der Zelle blockieren kann – und zwar ohne unerwünschte Nebenwirkungen. Die neuen Erkenntnisse tragen wesentlich zum Verständnis von Signal-Ketten in der Zelle bei. Zudem können sie Grundlagen für zukünftige Therapieansätze schaffen, beispielsweise im Bereich von Augen- oder Hauterkrankungen.

Die Forschungsergebnisse sind aus einer engen transatlantischen Zusammenarbeit hervorgegangen. Zusammen mit US-amerikanischen Hochschulen und Forschungseinrichtungen waren auch die Universität Bayreuth und das Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig daran beteiligt. In der aktuellen Online-Ausgabe der Fachzeitschrift ‚Nature Chemical Biology‘ stellen die Forschungsgruppen ihre Entdeckung vor.


Raumstruktur von menschlicher sAC, dargestellt als Oberfläche, mit dem Inhibitor LRE1 in einer tiefliegenden Bindetasche (li.). Dieser verhindert die Umsetzung von ATP (re.) zum Botenstoff cAMP.

Grafik: Clemens Steegborn; mit Autorangabe zur Veröffentlichung frei.

Zwei Stoffwechselwege
Die Entstehung des Botenstoffs cAMP und seine Signalfunktionen

Bei der Übertragung von Signalen im Körper hat das Molekül cyclisches Adenosinmonophosphat, kurz cAMP, eine entscheidende Funktion. Es entsteht unter anderem an der Zellmembran, von wo aus es spezielle Informationen in verschiedene Bereiche der Zelle übermittelt und biochemische Reaktionen auslöst. Dieser Weg der cAMP-Synthese ist zum Beispiel unentbehrlich, wenn das Stresshormon Adrenalin die zur Abwehr von Gefahren erforderlichen Energiereserven mobilisiert.

Ein signifikanter Teil des cAMP entsteht allerdings auf andere Weise – nämlich dadurch, dass es im Zellinneren durch lösliche Adenylatcyclase (sAC) gebildet wird. Dieses Enzym produziert größere Mengen des Botenstoffs vor allem dann, wenn das in der Zelle gelöste Kohlendioxid zunimmt. Dieser zweite Weg der cAMP-Entstehung ist an der Steuerung zahlreicher Prozesse beteiligt, wie etwa Zellatmung, Insulinfreisetzung, Spermienaktivierung und Regulation des Augeninnendrucks.

„Es ist von zentraler Bedeutung, diese beiden Stoffwechselwege und die unterschiedlichen Signalfunktionen der so gebildeten cAMP-Moleküle voneinander abgrenzen zu können“, erklärt Prof. Dr. Clemens Steegborn, Professor für Biochemie an der Universität Bayreuth. „Diese Abgrenzung ist zunächst einmal wichtig, um die Signalübertragungs-Wege in der Zelle besser verstehen zu können. Darüber hinaus aber ist sie hilfreich, wenn man Eingriffe in cAMP-gesteuerte Prozesse künftig für medizinische Anwendungen nutzen will. Die Wirkungen solcher Eingriffe sollten sich möglichst zielgenau eingrenzen lassen.“

Auf dem Weg zu einer gezielten Steuerung der cAMP-Synthese

Daher suchen Forscher schon seit längerem nach Wegen, entweder nur die cAMP-Synthese durch sAC oder aber nur die cAMP-Entstehung an der Zellmembran zu unterbinden. Bisher identifizierte Hemmstoffe wirken zu undifferenziert und haben in vielen Fällen starke unerwünschte Nebenwirkungen. Genau hier zeigt sich die Bedeutung des jetzt entdeckten Inhibitors LRE1. Die chemische Bezeichnung dafür lautet „6-chloro-N4-cyclopropyl-N4-[(thiophen-3-yl)methyl]pyrimidine-2,4-diamine”.

Dieses Molekül kann das Enzym sAC lahmlegen und die dadurch geförderte Synthese von cAMP blockieren. Es hat aber nach dem derzeitigen Forschungsstand keine unerwünschten Auswirkungen auf andere biochemische Prozesse innerhalb der Zelle. Auch die von der Zellmembran abhängige Entstehung von cAMP bleibt unbeeinträchtigt. Die Forscher in Deutschland und den USA entdeckten diese vielversprechende selektive Wirkung von LRE1 mithilfe einer hoch effektiven Screening-Technologie, die schnelle massenspektrometrische Analysen von Molekülen ermöglicht.

„Wir hoffen, dass die Entdeckung des Inhibitors LRE1 in Zukunft einmal helfen wird, gezielt in Stoffwechselprozesse eingreifen zu können und dadurch Therapien zu ermöglichen. Bis dahin ist aber noch viel Forschungsarbeit nötig“, sagt Dr. Joop van den Heuvel, der am Helmholtz-Zentrum für Infektionsforschung (HZI) die Arbeitsgruppe ‚Rekombinante Proteinexpression‘ sowie die ‚Protein Sample Production Facility (PSPF)‘ leitet. Schnellere Erfolge könnte der Einsatz von LRE1 für die Grundlagenforschung bringen. „Wir sind sicher, dass die Substanz viel zum Verständnis der Signalübertragungs-Wege innerhalb von Zellen beitragen wird“, ergänzt Prof. Steegborn.

Transatlantische Forschungskooperation

An der Universität Bayreuth hat Prof. Steegborn die molekularen Strukturen aufgeklärt, die für die Bindung des Hemmstoffs LRE1 an das Enzym sAC entscheidend sind und bei künftigen biomedizinischen Anwendungen in Betracht gezogen werden müssen. Zudem hat er an der Analyse der biochemischen Mechanismen mitgewirkt, die dazu führen, dass sAC deaktiviert und die Entstehung von cAMP unterdrückt wird. Diese Forschungsarbeiten wurden von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Dr. Joop van den Heuvel hat am HZI in Braunschweig ein Verfahren entwickelt, mit dem sich das Enzym sAC in größeren Mengen mithilfe tierischer Zellen synthetisieren lässt. Erst dadurch waren die umfangreichen Untersuchungen zur Struktur und Funktion von sAC möglich. Wissenschaftler des Weill Cornell Medical College und der Rockefeller University in New York sowie der University of Massachussetts haben den Hemmstoff LRE1 identifiziert und untersucht, wie sich die unterdrückte cAMP-Bildung auf zelluläre Prozesse auswirkt.

Veröffentlichung:

Lavoisier Ramos-Espiritu, Silke Kleinboelting, Felipe A. Navarrete, Antonio Alvau, Pablo E. Visconti, Federica Valsecchi, Anatoly Starkov, Giovanni Manfredi, Hannes Buck, Carolina Adura, Jonathan H. Zippin, Joop van den Heuvel, J. Fraser Glickman, Clemens Steegborn, Lonny R. Levin, Jochen Buck,
Discovery of LRE1, a Specific and Allosteric Inhibitor of Soluble Adenylyl Cyclase.
Nature Chemical Biology 2016. DOI: 10.1038/nchembio.2151

Kontakte:

Prof. Dr. Clemens Steegborn
Lehrstuhl für Biochemie
Universität Bayreuth
95440 Bayreuth
Telefon: +49 (0) 921 / 55-7830 und 55-7831
E-Mail: clemens.steegborn@uni-bayreuth.de

Dr. Joop van den Heuvel
Helmholtz-Zentrum für Infektionsforschung GmbH
Inhoffenstraße 7
38124 Braunschweig
Telefon: +49 (0) 531 / 6181-7046
E-Mail: pspf@helmholtz-hzi.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics