Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden

24.02.2017

Gasförmige Neurotransmitter spielen wichtige Rolle für das kurzfristige Ortsgedächtnis von Drosophila / Biochemische Prozesse entschlüsselt

Insekten besitzen ein Gedächtnis zur Orientierung im Raum, das ihnen bei einer kurzen Ablenkung hilft, sich an den ursprünglichen Weg zu erinnern. Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben bei der Fruchtfliege Drosophila melanogaster untersucht, wie dieses Arbeitsgedächtnis auf biochemischer Ebene funktioniert.


Wenige Ringneurone (grün) im Zentralhirn der Fliege (magenta) enthalten das visuelle Orientierungsgedächtnis

Foto/©: AG Strauss, JGU


Wenige Ringneurone (grün) im Ellipsoidkörper der Fliege (magenta in der Bildmitte) enthalten das visuelle Orientierungsgedächtnis. Der Balken (rechts unten) entspricht 25 Mikrometer (µm).

Foto/©: AG Strauss, JGU

Sie haben dabei zwei gasförmige Botenstoffe gefunden, die für die Signalvermittlung in den Nervenzellen eine wichtige Rolle spielen: Stickoxid und Schwefelwasserstoff. Das kurzzeitige Arbeitsgedächtnis wird über die Botenstoffe in wenigen ringförmigen Neuronen des Ellipsoidkörpers im Zentralhirn von Drosophila gebildet.

Fliegen bilden ein Gedächtnis für Orte, die sie gerade ansteuern wollen. Diese Erinnerung hält für ungefähr vier Sekunden an. Wird eine Fliege beispielsweise auf ihrem Weg für eine Sekunde abgelenkt, kann sie anschließend die zuvor eingeschlagene Richtung wieder aufnehmen.

"Dieses Erinnerungsvermögen ist für uns die Eintrittskarte, um die Biochemie eines Arbeitsgedächtnisses zu untersuchen", sagt Prof. Dr. Roland Strauss vom Institut für Entwicklungsbiologie und Neurobiologie der JGU zu dem Forschungsziel. Insbesondere interessiert sich der Wissenschaftler dafür, wie ein Netzwerk im Insektengehirn ein solches Ortsgedächtnis bilden kann und wie genau die biochemischen Abläufe funktionieren.

Bei den Untersuchungen im Rahmen ihrer Doktorarbeit fand Dr. Sara Kuntz überraschenderweise zwei gasförmige Neurotransmitter, die bei der Informationsübertragung mitwirken. Diese gasförmigen Botenstoffe gehen nicht den ansonsten üblichen Weg der Signalvermittlung via synaptischen Spalt, sondern können ohne an Rezeptoren anzudocken direkt durch die Membran der benachbarten Nervenzelle diffundieren. Von Stickoxid (NO) ist bereits bekannt, dass es zur Rückkopplung von Informationen zwischen zwei Nervenzellen für die Gedächtnisbildung benötigt wird. Neu ist, dass NO hier auch als sekundärer Botenstoff an der Verstärkung der Ausgangssignale von Nervenzellen beteiligt ist.

Diese Funktion von Stickoxid kann offenbar ebenso von Schwefelwasserstoff (H2S) übernommen werden. Von dem Gas wusste man bislang nur, dass es bei der Steuerung des Blutdrucks eine Rolle spielt, nicht jedoch im Nervensystem. "Eigentlich dachte man, Schwefelwasserstoff sei im Nervensystem schädlich. Aber in unseren Untersuchungen haben wir festgestellt, dass es als sekundärer Botenstoff von Bedeutung ist", so Strauss. "Wir waren verblüfft, gleich zwei gasförmige Neurotransmitter für das Gedächtnis zu finden."

Biochemischer Signalweg für das visuelle Arbeitsgedächtnis

Strauss und seine Mitarbeiter nehmen an, dass die beiden Neurotransmitter zusammen mit zyklischem Guanosinmonophosphat (cGMP) die ideale Speicherform für kurzzeitige Erinnerungen bilden. Der Ablauf funktioniert dann folgendermaßen: Die Fruchtfliege sieht einen Orientierungspunkt und bewegt sich in diese Richtung, worauf Stickoxid gebildet wird. Das Stickoxid aktiviert ein Enzym, das wiederum cGMP herstellt.

Entweder Stickoxid selbst oder cGMP reichern sich jetzt in einem Segment des Donut-förmigen Ellipsoidkörpers an, das dem eingeschlagenen Weg entspricht. Der Ellipsoidkörper befindet sich im Zentralkomplex des Insektenhirns und ist in 16 Segmente aufgeteilt, in etwa vergleichbar mit Kuchenstücken, die für 16 Raumrichtungen stehen.

Nun wird die Fliege auf ihrem Weg kurz abgelenkt, indem der erste Orientierungspunkt verschwindet und ein zweiter – beispielsweise im rechten Winkel dazu – für eine Sekunde auftaucht. Drosophila kann dann die ursprüngliche Orientierung wiederfinden, weil sich in dem entsprechenden Segment NO oder cGMP in vergleichsweise großer Menge angereichert hatte.

Das alles funktioniert jedoch nur unter einer Bedingung: Die Erinnerung wird nur abgerufen, wenn die Fliege zwischenzeitlich nichts mehr sieht, also wenn auch der zweite Orientierungspunkt verschwindet. "In dem Moment, wenn nichts mehr zu sehen ist, wird das Gedächtnis genutzt, das bis zu vier Sekunden problemlos überbrückt", erklärt Sara Kuntz, Erstautorin der Studie, mit einem Hinweis darauf, dass diese kurze Zeitspanne von vier Sekunden dem Problem absolut angemessen ist. "Der Ellipsoidkörper hält dann die Sicherungskopie bereit, um die kurze Unterbrechung zu überbrücken." Da sich Objekte auch weiterbewegen können, ist ein längeres Arbeitsgedächtnis nicht sinnvoll.

Fotos:
http://www.uni-mainz.de/bilder_presse/10_drosophila_gedaechtnis_ort_01.jpg
Wenige Ringneurone (grün) im Zentralhirn der Fliege (magenta) enthalten das visuelle Orientierungsgedächtnis
Foto/©: AG Strauss, JGU

http://www.uni-mainz.de/bilder_presse/10_drosophila_gedaechtnis_ort_02.jpg
Wenige Ringneurone (grün) im Ellipsoidkörper der Fliege (magenta in der Bildmitte) enthalten das visuelle Orientierungsgedächtnis. Der Balken (rechts unten) entspricht 25 Mikrometer (µm).
Foto/©: AG Strauss, JGU

Veröffentlichung:
Sara Kuntz, Burkhard Poeck, Roland Strauss
Visual Working Memory Requires Permissive and Instructive NO/cGMP Signaling at Presynapses in the Drosophila Central Brain
Current Biology, 16. Februar 2017
DOI: 10.1016/j.cub2016.12.056

Weitere Informationen:
Prof. Dr. Roland Strauss
Institut für Entwicklungsbiologie und Neurobiologie
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25034
Fax +49 6131 39-25443
E-Mail: rstrauss@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/abt3/307.php

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/abt3/269.php ;
http://www.cell.com/current-biology/abstract/S0960-9822(16)31538-X – Artikel in Current Biology ;
https://www.uni-mainz.de/presse/22493.php – Pressemitteilung "Auch Taufliegen haben ein Orientierungsgedächtnis", 3. Juni 2008

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics