Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sexuallockstoff von Parasiten warnt Fliegenmütter

17.12.2015

Drosophila-Weibchen meiden bei der Eiablage den Geruch parasitischer Wespen und verbessern so die Überlebenschancen ihrer Larven.

Weibchen der Schwarzbäuchigen Taufliege Drosophila melanogaster reagieren besonders stark auf den Duft ihrer schlimmsten Feinde, parasitischen Wespen der Gattung Leptopilina. In der Natur werden bis zu 80 Prozent der Larven von diesen Wespen parasitiert, die ihre Eier in die Larven legen.


Eine parasitische Wespe (Leptopilina boulardi) legt ihre Eier in Larven der Schwarzbäuchigen Taufliege Drosophila melanogaster. In der Natur fällt ein Großteil der Larven diesen Parasiten zum Opfer.

Markus Knaden / Max-Planck-Institut für chemische Ökologie

Der Wespennachwuchs frisst dann den Fliegennachwuchs von innen auf. Ein angeborenes Frühwarnsystem verschafft den Fliegen jedoch einen Überlebensvorteil. Wissenschaftlern des Max-Planck-Instituts für chemische Ökologie gelang jetzt die Identifizierung der auf den Feindesduft spezialisierten Sinneszelle der Fliege sowie der chemischen Verbindungen aus dem Körpergeruch der Wespen, die den Fluchtreflex der Fliege auslösen.

Eine dieser Verbindungen ist der Sexuallockstoff der Wespen. Erstmals konnte ein Schaltkreis im Geruchssystem in einem Insekt beschrieben werden, der ausschließlich auf das Aufspüren eines todbringenden Feindes spezialisiert ist. (PLoS Biology, Dezember 2015)

Das Zusammenleben verschiedener Lebewesen in der Natur ist oftmals ein Wechselspiel von fressen und gefressen werden. Im Laufe der Evolution haben Organismen verschiedenste Anpassungen entwickelt, die ihr Überleben sichern oder ihre Überlebensrate zumindest verbessern können. Der hochsensible und hochspezialisierte Geruchssinn von Insekten trägt in vielfältiger Weise dazu bei.

Wissenschaftler der Abteilung Evolutionäre Neuroethologie um Bill Hansson und Markus Knaden haben jetzt zusammen mit internationalen Partnern entdeckt, dass die Taufliege Drosophila melanogaster über eine Sinneszelle verfügt, die ausschließlich auf das Aufspüren des Sexuallockstoffs von parasitischen Wespen spezialisiert ist.

Entscheidend für die Ergebnisse war eine Kombination aus gas-chromatografischen und elektrophysiologischen Untersuchungen sowie Verhaltensstudien mit Fliegen und Larven. Damit haben die Wissenschaftler herausgefunden, welche Wespendüfte von welchen Geruchsrezeptoren der Fliegen wahrgenommen werden und dass sich diese Wahrnehmung auf das Verhalten der Fliegen auswirkt: Sowohl die erwachsenen Fliegen also auch ihre Larven meiden aktiv den Wespengeruch.

Drei Bestandteile des Wespendufts aktivierten eine einzige Sinneszelle auf den Antennen von ausgewachsenen Drosophila-Fliegen. Chemische Analysen ergaben, dass es sich bei den drei Substanzen um Actinidin, Nepatalactol und Iridomyrmecin handelt. Erstaunlicherweise ist Iridomyrmecin der Sexuallockstoff der Wespenweibchen. Während ausgewachsene Fliegen zwei Geruchsrezeptoren haben, die alle drei Substanzen aus dem Wespenduft wahrnehmen können, fehlt bei den Larven einer der beiden Rezeptoren. Sie nehmen daher nur einen der Wespendüfte wahr, das Sexualpheromon Iridomyrmecin.

Die Ergebnisse zeigen erneut, wie hochspezifisch einzelne Duftrezeptoren in Drosophila sein können. Die Wissenschaftler hatten in früheren Versuchen bereits alle Rezeptoren mit einer Vielzahl von Düften getestet. Einzelne Rezeptoren konnten jedoch nicht aktiviert werden, weshalb die Forscher vermuteten, dass es sich um sehr spezifische Rezeptoren handeln müsse. Sie überlegten, welche Düfte für die Fliegen und ihr Überleben in der Natur besonders wichtig sein könnten und testeten so auch den Geruch parasitischer Wespen.

„Bis vor kurzem war man der Meinung, dass die meisten Düfte über mehrere Rezeptoren wahrgenommen werden und jeder Rezeptor von einer Vielzahl von Düften gereizt wird. Aus dem Aktivierungsmuster der verschiedenen Rezeptoren kann die Fliege dann auf Umgebungsdüfte schließen. Die Erkenntnisse aus unserem Labor haben jedoch gezeigt, dass zumindest ein Teil des Geruchssystems der Fliege hochspezifisch ist. Düfte, die besonders wichtig sind, werden nicht über das generelle System wahrgenommen und verrechnet, sondern haben jeweils einen eigenen Kanal. Das scheint zu bewirken, dass Feindabwehr, Erkennung von gefährlichen Bakterien (Geosmin), oder die besten Eiablageplätze (Limonen) nicht durch weitere Umgebungsdüfte gestört werden“, sagt Markus Knaden, der zusammen mit Bill Hansson die Untersuchungen geleitet hat.

Die Stärke dieser Studie liegt darin, dass sie mehrere Beweisführungslinien miteinander kombiniert, die auf chemischen und physiologischen Analysen sowie Verhaltensexperimenten mit Fliegen und Larven beruhen. So konnten die Wissenschaftler zeigen, dass Taufliegen im Laufe der Evolution gelernt haben, den Duft der Parasiten zu ihrem Vorteil zu nutzen und sich so besser schützen können.

Dies ist umso bedeutsamer, als es sich um ein angeborenes Merkmal handelt, denn die getesteten Fliegen waren vorher nie in der Nähe parasitischer Wespen gewesen und kannten ihren Duft nicht. Vier weitere Drosophila-Arten zeigten das gleiche Vermeidungsverhalten gegenüber dem Wespenduft.

Dass die Taufliegen ihre Feinde an deren Sexuallockstoff erkennen, ist ein besonderer evolutionärer Schachzug, der Drosophila einen Vorteil verschafft, auf den die Wespen nicht so leicht in einer Gegenanpassung reagieren können, denn die Abgabe dieses Duftstoffes ist für ihre Fortpflanzung unverzichtbar. [AO]

Originalveröffentlichung:
Ebrahim, S. A. M., Dweck, H. K. M., Stökl, J., Hofferberth, J. E., Trona, F., Weniger, K., Rybak, J., Seki, Y., Stensmyr, M. C., Sachse, S., Hansson, B. S., Knaden, M. (2015). Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit. PLoS Biology. DOI: 10.1371/journal.pbio.1002318
http://dx.doi.org/10.1371/journal.pbio.1002318

Weitere Informationen:
Dr. Markus Knaden, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 3641 57-1421, E-Mail mknaden@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer, M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/evolutionary-neuroethology.html?&L=1 (Abteilung Evolutionäre Neuroethologie)
http://www.ice.mpg.de/ext/971.html?&L=1 ("Direktschaltung im Fruchtfliegenhirn: STOPP, diese Nahrung ist verdorben", Pressemeldung vom 7.12.2012)
http://www.ice.mpg.de/ext/1052.html?&L=1 ("Vorliebe für Orangen schützt Fruchtfliegen vor Parasiten", Pressemeldung vom 5.12.2013)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Fettleber produziert Eiweiße, die andere Organe schädigen können
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Auf dem Weg zu künstlichem Gewebe- und Organersatz aus dem 3D-Drucker
18.08.2017 | Ernst-Abbe-Hochschule Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten