Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seltene Erden in Bakterien

28.10.2013
Methan-abbauende Bakterien aus heißen Quellen benötigen die kostbaren Metalle zur Energiegewinnung

Seltene Erden gehören zu den wertvollsten Rohstoffen überhaupt. Die Metalle stecken in Mobiltelefonen, Bildschirmen und Computern. Aber auch für manche Organismen sind sie offenbar unverzichtbar.


Die Methanol-Dehydrogenase des Bakteriums Methylacidiphilum fumariolicum nutzt das Seltene Erden Metall Cerium (Ce) als Co-Faktor.

© MPI f. medizinische Forschung/Barends

In einer heißen Quelle hat ein Forscher-Team, mit dabei auch Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg, ein Bakterium entdeckt, das Seltene Erden zum Wachsen braucht: Methylacidiphilum fumariolicum benötigt Lanthanum, Cerium, Praseodymium oder Neodymium als Co-Faktoren für das Enzym Methanol-Dehydrogenase, mit dem es seine Energie gewinnt. Möglicherweise ist der Gebrauch von Seltene Erden unter Bakterien weiter verbreitet als gedacht.

Eigentlich sind die 17 zur Gruppe der Seltenen Erden gehörenden Metalle gar nicht selten. In der Erdkruste lagern größere Mengen als beispielsweise von Gold oder Platin. Allerdings sind die Elemente verhältnismäßig gleichmäßig verteilt, so dass der Abbau nur an wenigen Stellen wirtschaftlich ist.

Rar sind die Seltenen Erden dagegen in der belebten Natur. Da sie sich in Wasser nur sehr schwer lösen, können die meisten Organismen sie nicht für ihren Stoffwechsel verwenden. Umso überraschender ist die Entdeckung in einer Schlammpfütze vulkanischen Ursprungs im italienischen Solfatara. Hier haben Mikrobiologen von der Radboud-Universität in Nijmegen, Niederlande, eine Mikrobe gefunden, die ohne einige der Seltenen Erden nicht leben kann. Methylacidiphilum fumariolicum gehört zu einer Gruppe von Bakterien, die sich einen äußerst unwirtlichen Lebensraum ausgesucht haben: Sie gedeihen am besten bei einem pH-Wert zwischen 2 und 5 und Temperaturen zwischen 50 und 60 Grad – Bedingungen also, die für andere Organismen tödlich sind. Methylacidiphilum toleriert sogar pH-Werte unter 1, was konzentrierter Schwefelsäure entspricht.

Ihre Energie gewinnen die Bakterien aus Methan. Sie besitzen dafür ein spezielles Enzym, die Methanol-Dehydrogenase, das das beim Abbau des Methans entstehende Methanol mit Hilfe metallischer Co-Faktoren weiter verarbeitet. Die meisten dieser Bakterien verwenden dafür Kalzium.

Bei ihren Untersuchungen fiel den Forschern auf, dass Methylacidiphilum im Labor nur mit originalem Wasser aus dem Schlammtümpel gedieh. Keines der Spurenelemente, das die Forscher zu den Kulturschalen gaben, regte die Mikroben zum Wachstum an. Eine Analyse ergab, dass das Wasser hundert bis tausend Mal mehr Seltene Erden enthielt als normal.

Thomas Barends und Andreas Dietl vom Max-Planck-Institut für medizinische Forschung haben die dreidimensionale Struktur der Methanol-Dehydrogenase untersucht. Dabei fiel ihnen auf, dass Methylacidiphilum fumariolicum in seiner Methanol-Dehydrogenase kein Kalzium, sondern ein Atom eines anderen Metalls eingebaut hat.

"Dann passte auf einmal alles zusammen", erklärt Thomas Barends. "Wir konnten zeigen, dass es sich bei diesem geheimnisvollen Atom um ein Seltenes Erdmetall handeln muss. Dies ist das erste Mal überhaupt, dass eine solche biologische Funktion für Seltene Erde gefunden wurde.“

Methylacidiphilum benutzt die Seltenen Erden Lanthanum, Cerium, Praseodymium und Neodymium in seiner Methanol-Dehydrogenase an Stelle von Kalzium. Das Bakterium braucht sie, um aus Methan Energie zu gewinnen. Die Seltenen Erden besitzen einen etwas größeren Ionenradius als Kalzium, können dieses aber trotzdem als Co-Faktor von Enzymen ersetzen. „In der Aminosäurekette der Methanol-Dehydrogenase des Bakteriums sind einzelne Aminosäuren ausgetauscht worden. Dadurch entsteht mehr Platz für die Metalle“, sagt Barends. Methylacidiphilum nimmt zudem mehr Seltene Erden auf als es zum Überleben braucht. Es könnte also sein, dass es die Metalle in der Zelle speichert.

Genom- und Proteom-Analysen lassen vermuten, dass die Methylacidiphilum-Variante der Methanol-Dehydrogenase vor allem unter Bakterien aus Küstengewässern weit verbreitet ist. Auch auf der Blattoberfläche von Pflanzen haben Wissenschaftler damit ausgestattete Methan-verwertende Bakterien entdeckt. Pflanzen können Seltene Erden anreichern und so die Versorgung für die Bakterien sicherstellen. „Möglicherweise kommen solche Bakterien aber auch überall dort vor, wo es genügend Nachschub an Sand gibt. Denn Sand ist eine nahezu unerschöpfliche Quelle für Seltene Erden“, sagt Barends.

Ansprechpartner

Dr. Thomas Barends
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-508
E-Mail: thomas.barends@­mpimf-heidelberg.mpg.de
Originalpublikation
Arjan Pol, Thomas R. M. Barends, Andreas Dietl, Ahmad F. Khadem, Jelle Eygensteyn, Mike S. M. Jetten, and Huub J. M. Op den Camp
Rare earth metals are essential for methanotrophic life in volcanic mudpots
Environmental Microbiology, Oktober 2013, doi:10.1111/1462-2920.12249

Dr. Thomas Barends | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7586050/bakterium_seltene_erden

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen