Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

“Selfish” DNA in Animal Mitochondria Offers Possible Tool to Study Aging

13.08.2012
Researchers at Oregon State University have discovered, for the first time in any animal species, a type of “selfish” mitochondrial DNA that is actually hurting the organism and lessening its chance to survive – and bears a strong similarity to some damage done to human cells as they age.

The findings, just published in the journal PLoS One, are a biological oddity previously unknown in animals. But they may also provide an important new tool to study human aging, scientists said. The work was supported by the National Institutes of Health.


Courtesy of Oregon State University

For the first time researchers have found "selfish DNA" in the mitochondria of an animal, this roundworm, Caenorhabditis briggsae .

Such selfish mitochondrial DNA has been found before in plants, but not animals. In this case, the discovery was made almost by accident during some genetic research being done on a nematode, Caenorhabditis briggsae – a type of small roundworm.

“We weren’t even looking for this when we found it, at first we thought it must be a laboratory error,” said Dee Denver, an OSU associate professor of zoology. “Selfish DNA is not supposed to be found in animals. But it could turn out to be fairly important as a new genetic model to study the type of mitochondrial decay that is associated with human aging.”

DNA is the material that holds the basic genetic code for living organisms, and through complex biological processes guides beneficial cellular functions. Some of it is also found in the mitochondria, or energy-producing “powerhouse” of cells, which at one point in evolution was separate from the other DNA.

The mitochondria generally act for the benefit of the cell, even though it is somewhat separate. But the “selfish” DNA found in some plant mitochondria – and now in animals – has major differences. It tends to copy itself faster than other DNA, has no function useful to the cell, and in some cases actually harms the cell. In plants, for instance, it can affect flowering and sometimes cause sterility.

“We had seen this DNA before in this nematode and knew it was harmful, but didn’t realize it was selfish,” said Katie Clark, an OSU postdoctoral fellow. “Worms with it had less offspring than those without, they had less muscle activity. It might suggest that natural selection doesn’t work very well in this species.”

That’s part of the general quandary of selfish DNA in general, the scientists said. If it doesn’t help the organism survive and reproduce, why hasn’t it disappeared as a result of evolutionary pressure? Its persistence, they say, is an example of how natural selection doesn’t always work, either at the organism or cellular level. Biological progress is not perfect.

In this case, the population sizes of the nematode may be too small to eliminate the selfish DNA, researchers said.

What’s also interesting, they say, is that the defects this selfish DNA cause in this roundworm are surprisingly similar to the decayed mitochondrial DNA that accumulates as one aspect of human aging. More of the selfish DNA is also found in the worms as they age.

Further study of these biological differences may help shed light on what can cause the mitochondrial dysfunction, Denver said, and give researchers a new tool with which to study the aging process.

Dee Denver | Newswise Science News
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften