Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektiver Integrin-Ligand könnte helfen, Krebszellen gezielt zu bekämpfen

17.12.2015

Integrine helfen der Zelle mit ihrer Umgebung zu kommunizieren und sich ihr anzupassen. Diese Eigenschaften nutzen jedoch auch Krebszellen, um zu Überleben und sich im Körper auszubreiten. Nun ist es Wissenschaftlern der Technischen Universität München (TUM) gelungen ein kleines, hoch aktives Molekül zu entwickeln, das spezifisch an ein bestimmtes, in vielen Krebsarten aktives Integrin bindet. Es könnte helfen, Tumorzellen in Zukunft patientenspezifisch zu diagnostizieren und anschließend gezielt anzugreifen.

Integrine sind eine der wichtigsten Verbindungen der Zelle zur Außenwelt. Sie befinden sich auf der Oberfläche der Zelle und verankern sie mit anderen Zellen oder Substanzen im Zellzwischenraum, der sogenannten „extrazellulären Matrix“. Durch diesen direkten Kontakt wird die Zelle nicht nur im Verband gehalten, sie nimmt auch Signale ihrer Umgebung wahr und kann entsprechend reagieren – zum Beispiel indem sie wächst, sich teilt oder den Zellverband verlässt.


Wie ein Schlüssel passt der Ligand (grün) exakt zu einem bestimmten Integrin (blau/rot) auf der Oberfläche einer Zellmembran (beige)

Bild: Francesco S. di Leva, Luciana Marinelli / Università di Napoli Federico II

Bindet ein Protein aus der Umgebung, ein sogenannter Ligand, an das Integrin, werden im Inneren der Zelle je nach Art des Integrins unterschiedliche Signalkaskaden in Gang gesetzt. Ohne Integrine wäre die Zelle quasi „blind“, „taub“ und „stumm“ – und somit kaum überlebensfähig.

Das Ziel: Krebszellen charakterisieren

Doch auch Krebszellen nutzen die Integrine für ihre Zwecke. Mit ihrer Hilfe gelingt es ihnen, sich aus dem Tumorgewebe zu lösen, in Blutgefäße einzudringen und schließlich in anderen Geweben, etwa in der Lunge oder im Knochen wieder Fuß zu fassen – Metastasen sind die Folge. Welche der vielen Integrin-Subtypen bei einem Tumor allerdings genau am Werk sind, ist dabei sehr individuell und kann sich von Patient zu Patient stark unterscheiden.

„Wenn man wüsste, welche Integrin-Subtypen im speziellen Krebs eines Patienten aktiv sind, könnte man diese mit entsprechenden Wirkstoffen gezielt angreifen“, erklärt Tobias Kapp, Doktorand in der Arbeitsgruppe von Professor Horst Kessler am TUM Institute for Advanced Study und an der Fakultät für Chemie der TU München. „Dafür benötigt man Verbindungen, die möglichst spezifisch an nur ein bestimmtes Integrin binden.“

Nun ist es Kessler, Kapp und seinem Kollegen Dr. Oleg Maltsev gelungen, einen solchen Liganden zu entwickeln: Eine ringförmige Verbindung, die an das Integrin alphaVbeta6 bindet, das in vielen Krebsarten vorkommt und auch bei Fibrosen eine große Rolle spielt. Es handelt sich um einen der ersten spezifischen Liganden für diesen Integrin-Typen.

Ein vielversprechender Wirkstoff

Das neue Molekül erfüllt viele Anforderungen, die an einen potentiellen medizinischer Wirkstoff gestellt werden: Es dockt hoch selektiv nur an das alphaVbeta6-Integrin an – eine wichtige Voraussetzung um es später einmal als Basis für Medikamente mit möglichst wenigen Nebenwirkungen einzusetzen.

Außerdem bindet es bereits bei vergleichsweise geringen Konzentrationen einen Großteil der alphaVbeta6-Integrine, könnte also bereits in geringen Mengen wirken. Weiterhin ist es auf Grund seiner zyklischen Struktur beständig und wird, anders als in der Natur vorkommende Integrin-Liganden, im Blutplasma nur langsam abgebaut.

Und noch eine wichtige Eigenschaft bringt der neue Ligand mit: Eine seiner Aminosäuren, ein Lysin, kann für eine „Kopplung“ verwendet werden, mit deren Hilfe weitere Substanzen an die Verbindung angehängt werden können. „Dies ist von großer Bedeutung wenn man den Liganden auch als Diagnostikum verwenden möchte“, erklärt Kapp. „Man kann dann beispielsweise eine Substanz anhängen, die mit Hilfe medizinischer Bildgebungsgeräte sichtbar wird.“

Auf diese Weise ließe sich der Tumor charakterisieren und anschließend durch eine gezielte Therapie bekämpfen.“ Würde dies in Zukunft gelingen, wäre das ein großer Fortschritt gegenüber konventionellen Krebstherapien, die meist sehr breit angelegt sind und auch gesunde Zellen schädigen.

Schritt für Schritt zum optimalen Bindungspartner

Als Vorlage für den neuen Liganden benutzten die Wissenschaftler ein Protein des Maul-und-Klauenseuche-Virus. Dieser natürliche alphaVbeta6-Ligand bindet mit Hilfe einer Alpha-helikalen Struktur an das Integrin,. Die Forscher bauten die Helix mit einer kleinen, aus neun Aminosäuren bestehenden Ringstruktur nach.

In einem mehrstufigen Auswahlprozess testeten sie eine Vielzahl an Variationen, bis das geeignetste Molekül gefunden war. Dazu nutzten sie auch eine selbst entwickelte neue Technik: Hierbei wird die Seitenkette der Aminosäure Arginin als eine Art molekularer Schalter benutzt. Dieser beeinflusst, an welchen Integrin-Subtyp der Ligand selektiv bindet.

„Wir kennen nun die Form des Schlosses und wir wissen, wie wir genau passende Schlüssel herstellen können“, sagt Professor Kessler. „Damit öffnet sich die Tür zu einer personalisierten Medizin, bei der wir patientenspezifisch gezielt gegen Tumorzellen vorgehen können.“

Die Ergebnisse entstanden im Rahmen einer Forschungskooperation zwischen der Fakultät für Chemie und dem Klinikum rechts der Isar der TU München, der Università di Napoli Federico II und der Secondo Università di Napoli. Die Arbeiten wurden durch ein Reinhard Koselleck Projekt und über den Exzellenzcluster Center for Integrated Protein Research Munich (CIPSM) von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Die Struktur des Integrin-Liganden wurde am Bayerischen NMR-Zentrum auf dem Campus Garching bestimmt.

Publikationen:

O. V. Maltsev, U. K. Marelli, T. G. Kapp, F. Saverior Di Leva, S. Di Maro, M. Nieberler, U. Reunig, M. Schwaiger, E. Novellino, L. Marinelli, H. Kessler, Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6- Selective Integrin Ligands, Angewandte Chemie, DOI: 10.1002/ange.201508709

T. G. Kapp, M. Fottner, O. V. Maltsev, H. Kessler, Small cause, great impact – modification of the guanidine group in RGD controls integrin subtype selectivity, Angewandte Chemie, DOI: 10.1002/ange.201508713

Kontakt:

Prof. Dr. Horst Kessler
Institute for Advanced Study, Technische Universität München
Lichtenbergstr. 4, 85747 Garching, Germany
Tel.: +49-89 289 13300 – E-Mail: kessler@tum.de

Weitere Informationen:

http://go.tum.de/524040
http://go.tum.de/106019
http://onlinelibrary.wiley.com/wol1/doi/10.1002/ange.201508709/full
http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508713/full

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Superkondensatoren aus Holzbestandteilen
24.05.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Was einen guten Katalysator ausmacht
24.05.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Geregelter Nano-Aufbau

24.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics