Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektiver Integrin-Ligand könnte helfen, Krebszellen gezielt zu bekämpfen

17.12.2015

Integrine helfen der Zelle mit ihrer Umgebung zu kommunizieren und sich ihr anzupassen. Diese Eigenschaften nutzen jedoch auch Krebszellen, um zu Überleben und sich im Körper auszubreiten. Nun ist es Wissenschaftlern der Technischen Universität München (TUM) gelungen ein kleines, hoch aktives Molekül zu entwickeln, das spezifisch an ein bestimmtes, in vielen Krebsarten aktives Integrin bindet. Es könnte helfen, Tumorzellen in Zukunft patientenspezifisch zu diagnostizieren und anschließend gezielt anzugreifen.

Integrine sind eine der wichtigsten Verbindungen der Zelle zur Außenwelt. Sie befinden sich auf der Oberfläche der Zelle und verankern sie mit anderen Zellen oder Substanzen im Zellzwischenraum, der sogenannten „extrazellulären Matrix“. Durch diesen direkten Kontakt wird die Zelle nicht nur im Verband gehalten, sie nimmt auch Signale ihrer Umgebung wahr und kann entsprechend reagieren – zum Beispiel indem sie wächst, sich teilt oder den Zellverband verlässt.


Wie ein Schlüssel passt der Ligand (grün) exakt zu einem bestimmten Integrin (blau/rot) auf der Oberfläche einer Zellmembran (beige)

Bild: Francesco S. di Leva, Luciana Marinelli / Università di Napoli Federico II

Bindet ein Protein aus der Umgebung, ein sogenannter Ligand, an das Integrin, werden im Inneren der Zelle je nach Art des Integrins unterschiedliche Signalkaskaden in Gang gesetzt. Ohne Integrine wäre die Zelle quasi „blind“, „taub“ und „stumm“ – und somit kaum überlebensfähig.

Das Ziel: Krebszellen charakterisieren

Doch auch Krebszellen nutzen die Integrine für ihre Zwecke. Mit ihrer Hilfe gelingt es ihnen, sich aus dem Tumorgewebe zu lösen, in Blutgefäße einzudringen und schließlich in anderen Geweben, etwa in der Lunge oder im Knochen wieder Fuß zu fassen – Metastasen sind die Folge. Welche der vielen Integrin-Subtypen bei einem Tumor allerdings genau am Werk sind, ist dabei sehr individuell und kann sich von Patient zu Patient stark unterscheiden.

„Wenn man wüsste, welche Integrin-Subtypen im speziellen Krebs eines Patienten aktiv sind, könnte man diese mit entsprechenden Wirkstoffen gezielt angreifen“, erklärt Tobias Kapp, Doktorand in der Arbeitsgruppe von Professor Horst Kessler am TUM Institute for Advanced Study und an der Fakultät für Chemie der TU München. „Dafür benötigt man Verbindungen, die möglichst spezifisch an nur ein bestimmtes Integrin binden.“

Nun ist es Kessler, Kapp und seinem Kollegen Dr. Oleg Maltsev gelungen, einen solchen Liganden zu entwickeln: Eine ringförmige Verbindung, die an das Integrin alphaVbeta6 bindet, das in vielen Krebsarten vorkommt und auch bei Fibrosen eine große Rolle spielt. Es handelt sich um einen der ersten spezifischen Liganden für diesen Integrin-Typen.

Ein vielversprechender Wirkstoff

Das neue Molekül erfüllt viele Anforderungen, die an einen potentiellen medizinischer Wirkstoff gestellt werden: Es dockt hoch selektiv nur an das alphaVbeta6-Integrin an – eine wichtige Voraussetzung um es später einmal als Basis für Medikamente mit möglichst wenigen Nebenwirkungen einzusetzen.

Außerdem bindet es bereits bei vergleichsweise geringen Konzentrationen einen Großteil der alphaVbeta6-Integrine, könnte also bereits in geringen Mengen wirken. Weiterhin ist es auf Grund seiner zyklischen Struktur beständig und wird, anders als in der Natur vorkommende Integrin-Liganden, im Blutplasma nur langsam abgebaut.

Und noch eine wichtige Eigenschaft bringt der neue Ligand mit: Eine seiner Aminosäuren, ein Lysin, kann für eine „Kopplung“ verwendet werden, mit deren Hilfe weitere Substanzen an die Verbindung angehängt werden können. „Dies ist von großer Bedeutung wenn man den Liganden auch als Diagnostikum verwenden möchte“, erklärt Kapp. „Man kann dann beispielsweise eine Substanz anhängen, die mit Hilfe medizinischer Bildgebungsgeräte sichtbar wird.“

Auf diese Weise ließe sich der Tumor charakterisieren und anschließend durch eine gezielte Therapie bekämpfen.“ Würde dies in Zukunft gelingen, wäre das ein großer Fortschritt gegenüber konventionellen Krebstherapien, die meist sehr breit angelegt sind und auch gesunde Zellen schädigen.

Schritt für Schritt zum optimalen Bindungspartner

Als Vorlage für den neuen Liganden benutzten die Wissenschaftler ein Protein des Maul-und-Klauenseuche-Virus. Dieser natürliche alphaVbeta6-Ligand bindet mit Hilfe einer Alpha-helikalen Struktur an das Integrin,. Die Forscher bauten die Helix mit einer kleinen, aus neun Aminosäuren bestehenden Ringstruktur nach.

In einem mehrstufigen Auswahlprozess testeten sie eine Vielzahl an Variationen, bis das geeignetste Molekül gefunden war. Dazu nutzten sie auch eine selbst entwickelte neue Technik: Hierbei wird die Seitenkette der Aminosäure Arginin als eine Art molekularer Schalter benutzt. Dieser beeinflusst, an welchen Integrin-Subtyp der Ligand selektiv bindet.

„Wir kennen nun die Form des Schlosses und wir wissen, wie wir genau passende Schlüssel herstellen können“, sagt Professor Kessler. „Damit öffnet sich die Tür zu einer personalisierten Medizin, bei der wir patientenspezifisch gezielt gegen Tumorzellen vorgehen können.“

Die Ergebnisse entstanden im Rahmen einer Forschungskooperation zwischen der Fakultät für Chemie und dem Klinikum rechts der Isar der TU München, der Università di Napoli Federico II und der Secondo Università di Napoli. Die Arbeiten wurden durch ein Reinhard Koselleck Projekt und über den Exzellenzcluster Center for Integrated Protein Research Munich (CIPSM) von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Die Struktur des Integrin-Liganden wurde am Bayerischen NMR-Zentrum auf dem Campus Garching bestimmt.

Publikationen:

O. V. Maltsev, U. K. Marelli, T. G. Kapp, F. Saverior Di Leva, S. Di Maro, M. Nieberler, U. Reunig, M. Schwaiger, E. Novellino, L. Marinelli, H. Kessler, Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6- Selective Integrin Ligands, Angewandte Chemie, DOI: 10.1002/ange.201508709

T. G. Kapp, M. Fottner, O. V. Maltsev, H. Kessler, Small cause, great impact – modification of the guanidine group in RGD controls integrin subtype selectivity, Angewandte Chemie, DOI: 10.1002/ange.201508713

Kontakt:

Prof. Dr. Horst Kessler
Institute for Advanced Study, Technische Universität München
Lichtenbergstr. 4, 85747 Garching, Germany
Tel.: +49-89 289 13300 – E-Mail: kessler@tum.de

Weitere Informationen:

http://go.tum.de/524040
http://go.tum.de/106019
http://onlinelibrary.wiley.com/wol1/doi/10.1002/ange.201508709/full
http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508713/full

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Mechanismus der Gen-Inaktivierung könnte vor Altern und Krebs schützen
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Alge im Eismeer - Genom einer antarktischen Meeresalge entschlüsselt
23.02.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie