Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektiver Integrin-Ligand könnte helfen, Krebszellen gezielt zu bekämpfen

17.12.2015

Integrine helfen der Zelle mit ihrer Umgebung zu kommunizieren und sich ihr anzupassen. Diese Eigenschaften nutzen jedoch auch Krebszellen, um zu Überleben und sich im Körper auszubreiten. Nun ist es Wissenschaftlern der Technischen Universität München (TUM) gelungen ein kleines, hoch aktives Molekül zu entwickeln, das spezifisch an ein bestimmtes, in vielen Krebsarten aktives Integrin bindet. Es könnte helfen, Tumorzellen in Zukunft patientenspezifisch zu diagnostizieren und anschließend gezielt anzugreifen.

Integrine sind eine der wichtigsten Verbindungen der Zelle zur Außenwelt. Sie befinden sich auf der Oberfläche der Zelle und verankern sie mit anderen Zellen oder Substanzen im Zellzwischenraum, der sogenannten „extrazellulären Matrix“. Durch diesen direkten Kontakt wird die Zelle nicht nur im Verband gehalten, sie nimmt auch Signale ihrer Umgebung wahr und kann entsprechend reagieren – zum Beispiel indem sie wächst, sich teilt oder den Zellverband verlässt.


Wie ein Schlüssel passt der Ligand (grün) exakt zu einem bestimmten Integrin (blau/rot) auf der Oberfläche einer Zellmembran (beige)

Bild: Francesco S. di Leva, Luciana Marinelli / Università di Napoli Federico II

Bindet ein Protein aus der Umgebung, ein sogenannter Ligand, an das Integrin, werden im Inneren der Zelle je nach Art des Integrins unterschiedliche Signalkaskaden in Gang gesetzt. Ohne Integrine wäre die Zelle quasi „blind“, „taub“ und „stumm“ – und somit kaum überlebensfähig.

Das Ziel: Krebszellen charakterisieren

Doch auch Krebszellen nutzen die Integrine für ihre Zwecke. Mit ihrer Hilfe gelingt es ihnen, sich aus dem Tumorgewebe zu lösen, in Blutgefäße einzudringen und schließlich in anderen Geweben, etwa in der Lunge oder im Knochen wieder Fuß zu fassen – Metastasen sind die Folge. Welche der vielen Integrin-Subtypen bei einem Tumor allerdings genau am Werk sind, ist dabei sehr individuell und kann sich von Patient zu Patient stark unterscheiden.

„Wenn man wüsste, welche Integrin-Subtypen im speziellen Krebs eines Patienten aktiv sind, könnte man diese mit entsprechenden Wirkstoffen gezielt angreifen“, erklärt Tobias Kapp, Doktorand in der Arbeitsgruppe von Professor Horst Kessler am TUM Institute for Advanced Study und an der Fakultät für Chemie der TU München. „Dafür benötigt man Verbindungen, die möglichst spezifisch an nur ein bestimmtes Integrin binden.“

Nun ist es Kessler, Kapp und seinem Kollegen Dr. Oleg Maltsev gelungen, einen solchen Liganden zu entwickeln: Eine ringförmige Verbindung, die an das Integrin alphaVbeta6 bindet, das in vielen Krebsarten vorkommt und auch bei Fibrosen eine große Rolle spielt. Es handelt sich um einen der ersten spezifischen Liganden für diesen Integrin-Typen.

Ein vielversprechender Wirkstoff

Das neue Molekül erfüllt viele Anforderungen, die an einen potentiellen medizinischer Wirkstoff gestellt werden: Es dockt hoch selektiv nur an das alphaVbeta6-Integrin an – eine wichtige Voraussetzung um es später einmal als Basis für Medikamente mit möglichst wenigen Nebenwirkungen einzusetzen.

Außerdem bindet es bereits bei vergleichsweise geringen Konzentrationen einen Großteil der alphaVbeta6-Integrine, könnte also bereits in geringen Mengen wirken. Weiterhin ist es auf Grund seiner zyklischen Struktur beständig und wird, anders als in der Natur vorkommende Integrin-Liganden, im Blutplasma nur langsam abgebaut.

Und noch eine wichtige Eigenschaft bringt der neue Ligand mit: Eine seiner Aminosäuren, ein Lysin, kann für eine „Kopplung“ verwendet werden, mit deren Hilfe weitere Substanzen an die Verbindung angehängt werden können. „Dies ist von großer Bedeutung wenn man den Liganden auch als Diagnostikum verwenden möchte“, erklärt Kapp. „Man kann dann beispielsweise eine Substanz anhängen, die mit Hilfe medizinischer Bildgebungsgeräte sichtbar wird.“

Auf diese Weise ließe sich der Tumor charakterisieren und anschließend durch eine gezielte Therapie bekämpfen.“ Würde dies in Zukunft gelingen, wäre das ein großer Fortschritt gegenüber konventionellen Krebstherapien, die meist sehr breit angelegt sind und auch gesunde Zellen schädigen.

Schritt für Schritt zum optimalen Bindungspartner

Als Vorlage für den neuen Liganden benutzten die Wissenschaftler ein Protein des Maul-und-Klauenseuche-Virus. Dieser natürliche alphaVbeta6-Ligand bindet mit Hilfe einer Alpha-helikalen Struktur an das Integrin,. Die Forscher bauten die Helix mit einer kleinen, aus neun Aminosäuren bestehenden Ringstruktur nach.

In einem mehrstufigen Auswahlprozess testeten sie eine Vielzahl an Variationen, bis das geeignetste Molekül gefunden war. Dazu nutzten sie auch eine selbst entwickelte neue Technik: Hierbei wird die Seitenkette der Aminosäure Arginin als eine Art molekularer Schalter benutzt. Dieser beeinflusst, an welchen Integrin-Subtyp der Ligand selektiv bindet.

„Wir kennen nun die Form des Schlosses und wir wissen, wie wir genau passende Schlüssel herstellen können“, sagt Professor Kessler. „Damit öffnet sich die Tür zu einer personalisierten Medizin, bei der wir patientenspezifisch gezielt gegen Tumorzellen vorgehen können.“

Die Ergebnisse entstanden im Rahmen einer Forschungskooperation zwischen der Fakultät für Chemie und dem Klinikum rechts der Isar der TU München, der Università di Napoli Federico II und der Secondo Università di Napoli. Die Arbeiten wurden durch ein Reinhard Koselleck Projekt und über den Exzellenzcluster Center for Integrated Protein Research Munich (CIPSM) von der Deutschen Forschungsgemeinschaft (DFG) gefördert. Die Struktur des Integrin-Liganden wurde am Bayerischen NMR-Zentrum auf dem Campus Garching bestimmt.

Publikationen:

O. V. Maltsev, U. K. Marelli, T. G. Kapp, F. Saverior Di Leva, S. Di Maro, M. Nieberler, U. Reunig, M. Schwaiger, E. Novellino, L. Marinelli, H. Kessler, Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6- Selective Integrin Ligands, Angewandte Chemie, DOI: 10.1002/ange.201508709

T. G. Kapp, M. Fottner, O. V. Maltsev, H. Kessler, Small cause, great impact – modification of the guanidine group in RGD controls integrin subtype selectivity, Angewandte Chemie, DOI: 10.1002/ange.201508713

Kontakt:

Prof. Dr. Horst Kessler
Institute for Advanced Study, Technische Universität München
Lichtenbergstr. 4, 85747 Garching, Germany
Tel.: +49-89 289 13300 – E-Mail: kessler@tum.de

Weitere Informationen:

http://go.tum.de/524040
http://go.tum.de/106019
http://onlinelibrary.wiley.com/wol1/doi/10.1002/ange.201508709/full
http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508713/full

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie