Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstverstärkender chemischer Mechanismus erklärt extremen Wintersmog in China

22.12.2016

Stickstoff- und Schwefeloxide reagieren an Aerosolpartikeln miteinander und können durch einen bisher unerkannten Mechanismus schnell zu hohen Feinstaubkonzentrationen führen.

In kalten Wintermonaten sind Peking und große Teile Chinas regelmäßig von anhaltendem Smog eingehüllt. Dieser Smog besteht aus feinen Aerosolpartikeln und bedroht die Gesundheit von etwa 400 Millionen Menschen.


In Peking ist der Wintersmog oft besonders extrem und raubt die Sicht auf die Stadt. Die hohen Feinstaubwerte entstehen durch einen bisher unbeachteten chemischen Mechanismus in Aerosolpartikeln.

Min Shao, College of Environmental Sciences and Engineer, Peking University

Im Jahr 2013 wurden in Peking Rekordwerte von Feinstaub mit hohem Sulfatanteil gemessen. Dessen Quelle war jedoch lange ein Rätsel, da die Sonneneinstrahlung, die üblicherweise für die photochemische Produktion von Sulfat verantwortlich ist, aufgrund der Dunstglocke schwach ist.

Ein internationales Team unter Leitung von Wissenschaftlern des Max-Planck-Instituts für Chemie in Mainz konnte nun den Ursprung der hohen Sulfatanteile im Aerosolsmog aufdecken: Eine chemische Reaktion zwischen den Luftschadstoffen Stickstoffdioxid (NO₂) und Schwefeldioxid (SO₂) in wässrigen Aerosolpartikeln ermöglicht die schnelle Bildung und Ansammlung von Sulfat. Dieser Reaktionsweg ist unabhängig von Sonneneinstrahlung und photochemischen Reaktionen.

In der aktuellen Ausgabe der Wissenschaftszeitschrift „Science Advances“ zeigen die Forscher, dass das Wasser der Aerosole als Reaktionsmedium wirkt, in dem alkalische Komponenten der Aerosole Schwefeldioxid (SO₂) aus der Luft aufnehmen. SO₂ wird dann durch NO₂ oxidiert und bildet Sulfat (SO₄²⁻).

Dieser Mechanismus verstärkt sich selbst, da mit der Sulfatbildung die Partikelmasse zunimmt, und die Aerosolpartikel dadurch mehr Wasser aufnehmen können. Dieses wiederum führt zu einer schnelleren Sulfatproduktion und insgesamt zu einer stärkeren Smogbildung, als man bisher erklären konnte.

Yafang Cheng, Gruppenleiterin am MPI für Chemie und ihre Kollegen führten eine genaue Analyse von Aerosolmessdaten aus dem Januar 2013 durch, als Peking besonders stark von Smog betroffen war. Das Ergebnis verblüffte die Wissenschaftler, denn die Sulfatproduktionsrate war in Zeiten des stärksten Smogs sechs Mal größer als in Zeiten niedrigen bis mäßigen Smogs. „Wir haben festgestellt, dass die Sulfatproduktion mit der Konzentration an feinen Aerosolpartikeln stark ansteigt“, erklärt die Erstautorin der Studie.

„Die von uns beobachtete, stark erhöhte Sulfatproduktion bei gleichzeitig geringer Sonneneinstrahlung wies auf die Existenz des bisher nicht beachteten Reaktionswegs im Aerosolwasser hin", erklärt Hang Su, ebenfalls Gruppenleiter am MPI für Chemie und kokorrespondierender Autor der Studie. „Die Reaktion von Stickstoff- und Schwefeloxiden im Aerosolwasser erklärt die fehlende Sulfatquelle im Wintersmog. Wasser ist eine Schlüsselkomponente atmosphärischer Aerosole, die eine breite Palette von Flüssigphasenreaktionen ermöglicht", fasst Hang Su zusammen.

Umfassende und strenge Emissionskontrollen von Stickstoff- und Schwefeloxiden seien erforderlich, um die Bildung von Wintersmog in Peking und Umgebung zu vermeiden, schlussfolgern Yafang Cheng und Hang Su. Die Wissenschaftler erwarten, dass ihre Erkenntnisse zur Entwicklung und Umsetzung von Strategien zur Luftreinhaltung und zur Reduktion der negativen Gesundheitseffekte von Smog in China beitragen werden.

Die globale Relevanz und Perspektive der bahnbrechenden Studie erläutert Ulrich Pöschl, Direktor am MPI für Chemie: „Die Ergebnisse zeigen, wie eng die Wechselwirkungen von Gasen, Flüssigkeiten und festen Substanzen in unserer Umwelt miteinander gekoppelt sind. Sie verdeutlichen auch, wie wichtig diese Prozesse für unser Verständnis von Klimawandel und Gesundheit im Anthropozän sind.“ Der Begriff Anthropozän bezeichnet das gegenwärtige Erdzeitalter, in dem die Umwelt global von menschlichen Einflüssen geprägt ist.

Originalpublikation:
“Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China”: Yafang Cheng, Guangjie Zheng, Chao Wei, Qing Mu, Bo Zheng, Zhibin Wang, Meng Gao, Qiang Zhang, Kebin He, Gregory Carmichael, Ulrich Pöschl, Hang Su
Science Advances, 21 Dec. 2016; DOI: 10.1126/sciadv.1601530

(Die Studie war im Dezember 2015 fertiggestellt und erstmals zur wissenschaftlichen Begutachtung und Veröffentlichung eingereicht worden.)

Kontakt:
Dr. Yafang Cheng
Max-Planck-Institut für Chemie, Mainz
Tel.: +49-6131-3057201
Email: yafang.cheng@mpic.de

Prof. Dr. Ulrich Pöschl
Max-Planck-Institut für Chemie, Mainz
Direktor Abteilung Multiphasenchemie
Phone: +49-6131-3057000
Email: u.poschl@mpic.de

Dr. Hang Su
Max-Planck-Institut für Chemie, Mainz
Tel.: +49-6131-3057301
Email: h.su@mpic.de

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/selbstverstaerkender-chemische...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie