Selbstverstärkender chemischer Mechanismus erklärt extremen Wintersmog in China

In Peking ist der Wintersmog oft besonders extrem und raubt die Sicht auf die Stadt. Die hohen Feinstaubwerte entstehen durch einen bisher unbeachteten chemischen Mechanismus in Aerosolpartikeln. Min Shao, College of Environmental Sciences and Engineer, Peking University

In kalten Wintermonaten sind Peking und große Teile Chinas regelmäßig von anhaltendem Smog eingehüllt. Dieser Smog besteht aus feinen Aerosolpartikeln und bedroht die Gesundheit von etwa 400 Millionen Menschen.

Im Jahr 2013 wurden in Peking Rekordwerte von Feinstaub mit hohem Sulfatanteil gemessen. Dessen Quelle war jedoch lange ein Rätsel, da die Sonneneinstrahlung, die üblicherweise für die photochemische Produktion von Sulfat verantwortlich ist, aufgrund der Dunstglocke schwach ist.

Ein internationales Team unter Leitung von Wissenschaftlern des Max-Planck-Instituts für Chemie in Mainz konnte nun den Ursprung der hohen Sulfatanteile im Aerosolsmog aufdecken: Eine chemische Reaktion zwischen den Luftschadstoffen Stickstoffdioxid (NO₂) und Schwefeldioxid (SO₂) in wässrigen Aerosolpartikeln ermöglicht die schnelle Bildung und Ansammlung von Sulfat. Dieser Reaktionsweg ist unabhängig von Sonneneinstrahlung und photochemischen Reaktionen.

In der aktuellen Ausgabe der Wissenschaftszeitschrift „Science Advances“ zeigen die Forscher, dass das Wasser der Aerosole als Reaktionsmedium wirkt, in dem alkalische Komponenten der Aerosole Schwefeldioxid (SO₂) aus der Luft aufnehmen. SO₂ wird dann durch NO₂ oxidiert und bildet Sulfat (SO₄²⁻).

Dieser Mechanismus verstärkt sich selbst, da mit der Sulfatbildung die Partikelmasse zunimmt, und die Aerosolpartikel dadurch mehr Wasser aufnehmen können. Dieses wiederum führt zu einer schnelleren Sulfatproduktion und insgesamt zu einer stärkeren Smogbildung, als man bisher erklären konnte.

Yafang Cheng, Gruppenleiterin am MPI für Chemie und ihre Kollegen führten eine genaue Analyse von Aerosolmessdaten aus dem Januar 2013 durch, als Peking besonders stark von Smog betroffen war. Das Ergebnis verblüffte die Wissenschaftler, denn die Sulfatproduktionsrate war in Zeiten des stärksten Smogs sechs Mal größer als in Zeiten niedrigen bis mäßigen Smogs. „Wir haben festgestellt, dass die Sulfatproduktion mit der Konzentration an feinen Aerosolpartikeln stark ansteigt“, erklärt die Erstautorin der Studie.

„Die von uns beobachtete, stark erhöhte Sulfatproduktion bei gleichzeitig geringer Sonneneinstrahlung wies auf die Existenz des bisher nicht beachteten Reaktionswegs im Aerosolwasser hin“, erklärt Hang Su, ebenfalls Gruppenleiter am MPI für Chemie und kokorrespondierender Autor der Studie. „Die Reaktion von Stickstoff- und Schwefeloxiden im Aerosolwasser erklärt die fehlende Sulfatquelle im Wintersmog. Wasser ist eine Schlüsselkomponente atmosphärischer Aerosole, die eine breite Palette von Flüssigphasenreaktionen ermöglicht“, fasst Hang Su zusammen.

Umfassende und strenge Emissionskontrollen von Stickstoff- und Schwefeloxiden seien erforderlich, um die Bildung von Wintersmog in Peking und Umgebung zu vermeiden, schlussfolgern Yafang Cheng und Hang Su. Die Wissenschaftler erwarten, dass ihre Erkenntnisse zur Entwicklung und Umsetzung von Strategien zur Luftreinhaltung und zur Reduktion der negativen Gesundheitseffekte von Smog in China beitragen werden.

Die globale Relevanz und Perspektive der bahnbrechenden Studie erläutert Ulrich Pöschl, Direktor am MPI für Chemie: „Die Ergebnisse zeigen, wie eng die Wechselwirkungen von Gasen, Flüssigkeiten und festen Substanzen in unserer Umwelt miteinander gekoppelt sind. Sie verdeutlichen auch, wie wichtig diese Prozesse für unser Verständnis von Klimawandel und Gesundheit im Anthropozän sind.“ Der Begriff Anthropozän bezeichnet das gegenwärtige Erdzeitalter, in dem die Umwelt global von menschlichen Einflüssen geprägt ist.

Originalpublikation:
“Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China”: Yafang Cheng, Guangjie Zheng, Chao Wei, Qing Mu, Bo Zheng, Zhibin Wang, Meng Gao, Qiang Zhang, Kebin He, Gregory Carmichael, Ulrich Pöschl, Hang Su
Science Advances, 21 Dec. 2016; DOI: 10.1126/sciadv.1601530

(Die Studie war im Dezember 2015 fertiggestellt und erstmals zur wissenschaftlichen Begutachtung und Veröffentlichung eingereicht worden.)

Kontakt:
Dr. Yafang Cheng
Max-Planck-Institut für Chemie, Mainz
Tel.: +49-6131-3057201
Email: yafang.cheng@mpic.de

Prof. Dr. Ulrich Pöschl
Max-Planck-Institut für Chemie, Mainz
Direktor Abteilung Multiphasenchemie
Phone: +49-6131-3057000
Email: u.poschl@mpic.de

Dr. Hang Su
Max-Planck-Institut für Chemie, Mainz
Tel.: +49-6131-3057301
Email: h.su@mpic.de

http://www.mpic.de/aktuelles/pressemeldungen/news/selbstverstaerkender-chemische…

Media Contact

Dr. Susanne Benner Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer