Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstverdauung als Überlebensstrategie

02.03.2009
In Hungerzeiten schnallen Zellen den Gürtel enger: Sie beginnen ihre eigenen Proteine und Zellorganellen zu verdauen. Ein internationales Team von Biochemikern, Zellbiologen und Genetikern hat nun erstmals einen Mechanismus vorgeschlagen, der erklärt, wie die Autophagosomen erkennen, welche Proteine oder Organellen sie verdauen sollen.

In Hungerzeiten schnallen Zellen den Gürtel enger: Sie beginnen ihre eigenen Proteine und Zellorganellen zu verdauen. Diese als Autophagie bezeichnete Selbstverdauung findet in speziellen Organellen, den Autophagosomen, statt.

Was bei einfachen Hefezellen eine Überlebensstrategie für schlechte Zeiten ist, hat sich im Laufe der Evolution zu einem Selbstreinigungsprozess weiter entwickelt: In Säugetieren beseitigen die Autophagosomen auch fehlgefaltete Proteine, beschädigte Organellen oder krankmachende Bakterien. Ist diese Funktion gestört, können vermehrt Infektionskrankheiten sowie Krebs, Parkinson oder Alzheimer auftreten.

Biochemiker der Goethe-Universität haben nun in Kooperation mit der Universität Tromsø, Norwegen, dem Weizmann Institut, Israel, und dem Tokyo Metropolitan Institute, Japan, erstmals einen Mechanismus vorgeschlagen, der erklärt, wie die Autophagosomen erkennen, welche Proteine oder Organellen sie verdauen sollen.

"Es ist schon erstaunlich, dass die Autophagie seit über 30 Jahren bekannt ist, aber bisher noch niemand nach Rezeptoren gesucht hat, die dem Prozess seine Selektivität verleihen", erklärt Prof. Ivan Dikic der am Institut für Biochemie II und am Exzellenzcluster "Makromolekulare Komplexe" arbeitet. Ihm kam zugute, dass seine Gruppe über viele Jahre einen anderen Selbstreinigungsprozess der Zelle entschlüsselt hat: die Zerlegung kleiner Moleküle im Proteasom, einer Art "molekularen Schredder". "Wir wissen, dass die zur Entsorgung bestimmten Moleküle mit einem kleinen Protein, dem Ubiquitin, markiert werden. Dieses wird dann von einem Rezeptor am Eingang des Proteasoms erkannt", sagt Dikic. "Es lag nahe, einen ähnlichen Mechanismus für die Verdauung in Autophagosomen vorzuschlagen".

Anders als das Proteasom, das eine komplexe molekulare Maschine darstellt, sind Autophagosomen einfach gebaut: Es handelt sich um doppelte Membranen, die im Zytoplasma herum schwimmen. Ähnlich den weißen Blutkörperchen können sie größere Proteine oder sogar Zellorganellen einschließen. Da sie keine eigenen Enzyme besitzen, um ihren Inhalt zu verdauen, verschmelzen sie anschließend mit Lysosomen. Als kürzlich die Gruppe von Yoshinori Ohsumi vom National Institute for Basic Biology im japanischen Okazaki berichtete, die Außenseite der Autophagosomen sei mit Ubiquitin ähnlichen Proteinen (ATG8) bestückt, und nachwies, dass diese für die Autophagie spezifisch sind, wurden Dikic und sein Mitarbeiter Dr. Vladimir Kirkin hellhörig. Sie begannen gezielt nach Kandidaten für Autophagie-Rezeptoren zu suchen, die an die Familie der ATG8-Proteine binden.

Wie die Forscher in der aktuellen Ausgabe der renommierten Fachzeitschrift Molecular Cell berichten, konnten sie mit Methoden der Zellbiologie, Biochemie und Maus-Genetik neben dem bereits bekannten p62/SQSTM1-Protein ein weiteres Protein identifizieren, das als Rezeptor infrage kommt: das in Tumoren gehäuft auftretende Probein MBR1. Beide Proteine haben eine ähnliche, kettenförmige Struktur. An einen Ende binden sie an Ubiquitin, das die zur Entsorgung bestimmten Protein-Aggregate und Organellen kennzeichnet. Benachbart zu dem Ubiquitin bindenden Ende der Rezeptor-Proteine befindet sich eine Domäne, die an die Familie der ATG8-Proteine auf der äußeren Membran der Autophagosomen bindet. Auf diese Weise könnte der "Protein-Schrott" am Autophagosom andocken und anschließend von der Membran umschlossen werden.

Kirkin, der inzwischen bei der Firma Merck Serono in Darmstadt arbeitet, verfolgt dort die Möglichkeit, diese Erkenntnisse für die Entwicklung neuer Wirkstoffe nutzbar zu machen. Dikic und seine Gruppe wollen unterdessen auch bei Mitochondrien, die für oxydativen Stress in der Zelle verantwortlich sind, nach Rezeptoren für die Autophagie auf diesen wichtigen Zellorganellen suchen.

Informationen: Prof. Ivan Dikic, Institut für Biochemie II, Campus Niederrad,
Tel: (069) 6301-83647; ivan.dikic@ biochem2.de
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Uni den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die Goethe-Universität als eine der forschungsstärksten Hochschulen.

Herausgeber Der Präsident der Goethe-Universität Frankfurt am Main. Redaktion Dr. Anne Hardy, Referentin für Wissenschaftskommunikation. Abteilung Marketing und Kommunikation, Senckenberganlage 31, 60325 Frankfurt am Main, Tel: (069) 798-9228, Fax: (069) 798-28530, hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.biochem2.de
http://www.cell.com/molecular-cell/abstract/S1097-2765(09)00064-1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten