Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstmord oder zweite Chance – Wie der Körper auf autoimmune T-Zellen reagiert

05.05.2010
T-Zellen sind ein entscheidender Bestandteil des menschlichen Immunsystems. Im Lauf ihrer Entwicklung in der Thymusdrüse erhält jede T-Zelle einen individuellen Rezeptor an der Oberfläche.

Dank der Vielfalt dieser Moleküle kann der Körper nahezu jeden Krankheitserreger erkennen und unschädlich machen. Allerdings entstehen im Thymus immer auch T-Zellen, die körpereigene Strukturen erkennen und angreifen könnten. Werden diese nicht unschädlich gemacht, kann dies Autoimmunerkrankungen wie Typ-1-Diabetes, Multiple Sklerose oder Morbus Crohn nach sich ziehen.

Nun konnte ein Team um den LMU-Immunologen Professor Ludger Klein in Zusammenarbeit mit Wissenschaftlern der TU München neue Erkenntnisse darüber gewinnen, wie die gefährlichen T-Zellen vom Körper erkannt und aussortiert werden. „Dabei haben wir auch entdeckt, warum manche der schädlichen T-Zellen in den ‚Selbstmord‘ getrieben werden, während andere zu ungefährlichen, sogenannten regulatorischen T-Zellen ‚umerzogen‘ werden“, berichtet Klein. „Die Ergebnisse tragen hoffentlich dazu bei, Autoimmunkrankheiten besser zu verstehen. Sie könnten auch einen Ausgangspunkt für neue, innovative Therapieansätze darstellen.“ (Nature Immunology online, 2. Mai 2010)

Gemeinsam mit den B-Lymphozyten gehören die T-Lymphozyten oder T-Zellen zur Gruppe der weißen Blutkörperchen, die spezifische Aufgaben bei der Abwehr von Krankheitserregern erfüllen. Unmittelbar nach ihrer Entstehung gehen die T-Zellen in der Thymusdrüse gewissermaßen „in die Schule“: Dort erhalten sie nach dem Zufallsprinzip einen Rezeptor, der jeweils nur eine spezifische Struktur erkennt. Anschließend werden die Zellen daraufhin getestet, ob sie mit ihrem Rezeptor auf eine körpereigene Struktur reagieren. „Ist dies der Fall, werden die potentiell gefährlichen T-Zellen meist noch im Thymus unschädlich gemacht“, berichtet der LMU-Immunologe Ludger Klein. „Entweder sie werden in den programmierten Zelltod getrieben oder zu sogenannten regulatorischen T-Zellen ‚umerzogen‘. Diese erkennen zwar immer noch körpereigene Strukturen, sie erfüllen nun jedoch den Zweck, schädliche T-Zellen in ihrer Nachbarschaft unter Kontrolle zu halten.“

Bereits vor einigen Jahren konnten Klein und sein Forscherteam zeigen, dass es im Thymus einen spezialisierten Zelltyp gibt, der sämtliche Zellstrukturen des Körpers produziert, die Medullären Epithelzellen. Die so entstandenen Proteine, auch „Selbst-Antigene“ genannt, werden anschließend in kurze Spaltstücke zerlegt und in dieser Form den T-Zellen präsentiert. „Damit entsteht im Thymus quasi ein Abbild des gesamten Körpers“, erläutert Maria Hinterberger, Erstautorin der Studie. „T-Zellen, die auf körpereigene Strukturen reagieren, können so gezielt aussortiert werden.“ Allerdings war bislang unklar, auf welche Weise die Proteinbruchstücke den T-Zellen dargeboten werden. „Eine verbreitete Annahme war, dass diese Aufgabe von den Dendritischen Zellen im Thymus erfüllt wird“, sagt Hinterberger. „In unserer neuen Arbeit haben wir uns nun mit der Frage beschäftigt, ob auch die Medullären Epithelzellen als Antigen-präsentierende Zellen fungieren.“

Mit Hilfe eines genetischen Tricks, der sogenannten „Knock-down-Methode“, setzten die Forscher bei Mäusen die Aktivität eines Schlüsselmoleküls der Medullären Epithelzellen herunter, das spezifisch an der Präsentation der Proteinstücke beteiligt ist. Dagegen blieb die Funktion der Epithelzellen als Hersteller der Proteinschnipsel vollständig erhalten. „Interessanterweise wurden unter diesen Umständen T-Zellen, die normalerweise in den Zelltod getrieben werden, nicht mehr effizient eliminiert“, sagt Klein. „Dies zeigt uns, dass den Medullären Epithelzellen eine ganz entscheidende Funktion als Antigen-präsentierende Zellen zukommt.“ So ließ sich durch die genetischen Veränderungen in einigen Organen auch eine autoimmune Gewebszerstörung beobachten, die jedoch relativ mild ausfiel.

Zusätzlich erhielten die Forscher in ihrer Untersuchung erste Antworten auf die Frage, warum manche der als schädlich erkannten T-Zellen im Thymus in den Zelltod getrieben werden, während andere unter genau denselben Umständen in regulatorische T-Zellen verwandelt werden. So wurde die Antigen-präsentierende Funktion der T-Zellen durch die „Knock-down-Methode“ nicht vollkommen ausgeschaltet, sondern nur auf etwa ein Zehntel des ursprünglichen Wertes herunterreguliert. „Dadurch entwickelten sich einige T-Zellen, die normalerweise aussortiert worden wären, zu regulatorischen Zellen“, berichtet Klein. „Demnach spielt die Stärke der Antigen-Erkennung im Thymus eine entscheidende Rolle dafür, ob eine potentiell schädliche T-Zelle abstirbt oder zu einer harmlosen regulatorischen T-Zelle wird.“ Das Verständnis dieser Mechanismen könnte dazu beitragen, neue Therapieansätze für Autoimmunkrankheiten zu entwickeln. (CA)

Publikation:
„Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance”;
Maria Hinterberger, Martin Aichinger, Olivia Prazeres da Costa, David Voehringer, Reinhard Hoffmann, Ludger Klein;
Nature Immunology online; 2. Mai 2010;
DOI: 10.1038/ni.1874
Ansprechpartner:
Prof. Dr. Ludger Klein
Institut für Immunologie der LMU
Tel.: 089 / 2180 - 75696
E-Mail: ludger.klein@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.immunologie.med.uni-muenchen.de/research/ag_klein/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie