Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstheilende Polymere: Hallesche Chemiker entwickeln Katalysator zur punktgenauen Reparatur

10.12.2015

Eine Gruppe von Chemikern der Martin-Luther-Universität Halle-Wittenberg (MLU) hat in einer Reihe von Experimenten einen neuartigen Kupfer-basierten Katalysator entwickelt, der in der Lage ist, Materialschäden über die damit verbundene Reißkraft direkt zu erkennen und anschließend zu heilen. Das führt in der Praxis zu einer erhöhten Lebensdauer des Materials und somit auch zu einer gesteigerten Sicherheit von Polymerwerkstoffen und einer deutlichen Reduzierung von Abfall. Erste Ergebnisse dieser Arbeiten wurden kürzlich im Fachjournal „Angewandte Chemie“ veröffentlicht.

Die Gruppe um Prof. Dr. Wolfgang H. Binder vom Institut für Chemie der MLU beschäftigt sich seit geraumer Zeit mit der Entwicklung von sich selbst heilenden Polymerwerkstoffen, um dem Wunsch der Menschen nach dauerhaft haltbaren Materialien näher zu kommen.

Damit mechanische Schäden - zum Beispiel durch Deformation, Lichteinflüsse oder auch witterungsbedingten Abbau - bereits im Frühstadium erkannt und wenn möglich repariert werden können, forscht sein Team an neuen Konzepten. Sie sollen eine direkte Umsetzung von mechanischer Energie - wie sie etwa beim Zerreißen eines Gummibands durch Krafteinwirkung entsteht - in chemische Prozesse erlauben, die diesen Riss zeigen und schließen können.

Über einen neu entwickelten Katalysator können selbst Mikrorisse in Materialien nun tatsächlich direkt erkannt werden. Über eine nachfolgende katalytische Reaktion werden diese Risse sichtbar markiert. Der Katalysator wird dabei quasi in die Mitte eines gummibandähnlichen Moleküls eingespannt, so dass - bei Anwendung der zerstörerischen Kraft - der Katalysator zuerst „zerreißt" und somit als so genannter „Mechanokatalysator" wirkt. Dabei werden die aufgetretenen Schäden durch eine bläuliche Fluoreszenz angezeigt.

Für den Prozess werden die nicht fluoreszierenden Komponenten 3-Azido-7-hydroxy-coumarin und Phenylacetylen zusammen mit einem Kupfer(I)-Katalysator in eine Polymer-Matrix eingebettet. In der sich anschließenden chemischen Reaktion wird der stark fluoreszierende Farbstoff 7-Hydroxy-3-(4-phenyl-1H-[1,2,3]triazol-1-yl)-coumarin gebildet - allerdings erst, wenn eine Schädigung des Materials eintritt. Durch die übertragene Kraft wird in Folge eine der beiden an das Kupfer angehängten Polymerketten abgespalten und das Kupferzentrum für die chemische Reaktion aktiviert.

So wird zum einen sichergestellt, dass die Farbreaktion nur an jener Stelle eintritt, an der das Material geschädigt wurde. Zum anderen wird in Folge eine Reparatur an nur dieser geschädigten Stelle ermöglicht. Der Schaden zeigt und repariert sich also von selbst.

In der Weiterführung des Konzeptes der Mechanochemie eröffnet sich ein breites Spektrum an Anwendungsmöglichkeiten in Beschichtungen sowie in der Flugzeug- und Autoindustrie, wo eine millimetergenaue Schadensreparatur an der deformierten Stelle im Material nötig ist.

Angaben zur Publikation:
Michael, P.; Binder, W. H.: “A Mechanochemically Triggered “Click” Catalyst”, erschienen in: Angewandte Chemie; 2015, 127 (47), 14124-14128.

Manuela Bank-Zillmann | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-halle.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie