Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstauslöschende Botschaften

27.08.2009
Auf Licht reagierende Beschichtungen machen Metallnanopartikel zu Tinten für selbstradierendes Papier

Wer gern Agentenfilme wie "Mission Impossible" sieht, kennt sich selbst zerstörende Botschaften, die den Geheimagenten über seinen Auftrag informieren und sich danach in Rauch auflösen.

In der realen Welt ist man mehr an Materialien interessiert, die sich zwar nicht gerade selbst zerstören, aber Texte oder Abbildungen nur für eine vorgegebene Zeitspanne speichern. "Solche wiederbeschreibbaren ,Papiere' schützen sensible Informationen," erklärt Bartosz A. Grzybowski von der Northwestern University in Evanston (IL, USA).

"Man stelle sich eine Besprechung im Pentagon vor, bei dem sich geheime Unterlagen an deren Ende von selbst auslöschen. Es gäbe keine Möglichkeit, sie zu entwenden und an Terroristen zu verkaufen." Grzybowski und sein Team haben ein neues Konzept entwickelt, mit dem sich selbst auslöschende Bilder erzeugen lassen. Anders als mit bisherigen Techniken sind hierbei mehrfarbige Abbildungen möglich. Wie die Forscher in der Zeitschrift Angewandte Chemie berichten, basiert das Konzept auf einer "Tinte" aus nanoskopischen Metallpartikeln, die unter Lichteinfluss - in einem umkehrbaren Prozess - zu größeren Teilchen zusammenklumpen.

Zur Herstellung des neuen beschreibbaren Materials betten die Wissenschaftler Silber- und/oder Goldnanopartikel in einen dünnen organischen Gelfilm ein, den sie einlaminieren. Die Filme sind kräftig rot, wenn sie Goldpartikel enthalten, und gelb, wenn sie Silber enthalten. Werden diese Filme mit UV-Licht bestrahlt, ändert sich in den bestrahlten Regionen die Farbe. Wie stark, hängt von der Bestrahlungsdauer ab. Goldhaltige Filme verfärben sich abgestuft von rot zu einem blassen Blau, silberhaltige von gelb zu violett. Mehrfarbige Bilder entstehen, wenn Bereiche verschieden lange bestrahlt werden. Die erzeugten Bilder sind nicht dauerhaft. Sie verblassen bis sie ganz "ausradiert" sind.

Wie funktioniert das? Der eigentliche Trick besteht in einer speziellen organischen Beschichtung der Metall-Nanopartikel. Unter UV-Licht lagern sich bestimmte Atomgruppen in diesen Molekülen um. Dadurch werden sie wesentlich polarer und ziehen sich untereinander an. Die Nanopartikel lagern sich dann bevorzugt zu großen kugelförmigen Aggregaten zusammen. Die Farbe ändert sich, denn bei nanoskopischen Teilchen ist der Farbeindruck von der Größe der gebildeten Aggregate abhängig. Wie groß die Aggregate werden, hängt wiederum von der Dauer der UV-Bestrahlung ab. Auf diese Weise lässt sich die Farbe der "Tinte" kontrollieren.

Die Partikel-Aggregate zerfallen nach und nach wieder zu einzelnen Metall-Nanopartikeln, weil die Atomgruppen wieder in ihre ursprüngliche Anordnung zurückkehren - die Farbe verblasst. Die Zeit bis zur Auslöschung kann über die genaue Zusammensetzung der Beschichtung gesteuert werden. Das "Ausradieren" lässt sich durch Bestrahlung mit sichtbarem Licht oder Erwärmen beschleunigen.

Angewandte Chemie: Presseinfo 32/2009

Autor: Bartosz A. Grzybowski, Northwestern University, Evanston (USA), http://dysa.northwestern.edu/

Angewandte Chemie 2009, 121, No. 38, 7169-7173, doi: 10.1002/ange.200901119

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de
http://dysa.northwestern.edu/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften