Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sekunden im Schaltkreis

24.08.2011
Forscher zeigen in dem Fachmagazin Nature Neuroscience, wie das Gehirn Informationen für kurze Zeit speichert

Der Freiburger Biologe Dr. Aristides Arrenberg hat gemeinsam mit amerikanischen Kollegen untersucht, welche Mechanismen das Gehirn benutzt, um Informationen für kurze Zeit zu speichern. Die Zellen einiger Schaltkreise speichern Informationen durch die Aufrechterhaltung eines konstanten Aktivitätslevels: Ein kurzlebiger Reiz regt die Aktivität von Neuronen an, diese Aktivität wird darauf folgend für mehrere Sekunden aufrechterhalten. Die Mechanismen dieser Informations-Speicherung sind nur unzulänglich bekannt, obwohl dieses Phänomen in sehr vielen Gehirnbereichen auftritt.

Die Autoren der Studie, die nun im Fachmagazin Nature Neuroscience erschienen ist, haben die andauernde Aktivität in Zebrafisch-Larven in einem Hinterhirn-Schaltkreis untersucht, der für Augenbewegungen zuständig ist. In diesem Schaltkreis, dem so genannten okulomotorischen System, wird das Kommando für eine schnelle Augenbewegung durch spezielle Nervenzellen signalisiert, die eine kurzlebige Folge von Aktionspotenzialen produzieren. Diese so genannte Feuersalve erreicht zum einen die für Bewegung zuständigen Neuronen der Augen und löst so eine „Sakkade“, eine schnelle Augenbewegung, aus. Zum anderen wird diese Salve zu einer zweiten Zellpopulation weitergeleitet, dem so genannten neuralen Integrator für Augenbewegungen. Hier wird das Geschwindigkeitssignal im mathematischen Sinn integriert und ein Positions-Signal entsteht. Dieses Signal wird zu den Motorneuronen weitergeleitet und produziert auf diese Weise – im Fisch wie im Menschen – eine stabile Augenposition nach der schnellen Augenbewegung. Der neurale Integrator hält dieses Signal für mehrere Sekunden aufrecht, bis eine neue Sakkade initiiert wird.

Die andauernde Aktivität im neuralen Integrator für Augenpositionen ist niemals perfekt, da die Augen nach einer Sakkade ganz langsam zu ihrem Ruhepunkt zurückdriften. Daher bot sich den Autoren die Möglichkeit, die Dynamik des Systems während spontaner Augenbewegungen in der Dunkelheit zu messen und das Modell zu testen, ohne dass die Messungen durch Sakkaden-Kommandos oder visuelle Rückkopplung verfälscht wurden.

Die Autoren fanden heraus, dass die Zellen des neuralen Integrators für Augenbewegungen entgegen bisheriger Annahmen keine einheitliche Population darstellen und die Modelle, mit denen eine andauernde Aktivität im okulomotorischen System erklärt wird, neu überdacht werden müssen. Die Wissenschaftler haben gezeigt, dass die Integrator-Neurone keine einheitliche Dynamik besitzen und die Neurone anhand ihrer Integrator-Zeitkonstanten im Hinterhirn verteilt sind.

Diese Ergebnisse liefern neue Hinweise auf die Organisation und Funktionsweise von Schaltkreisen mit andauernder Aktivität und bieten eine potenzielle Erklärung für die geringe Störanfälligkeit der Schaltkreise. Die Studie ist ein wichtiges Puzzlestück in dem Bestreben von Netzwerk-Neurowissenschaftlern, die Funktionsweise von lokalen Schaltkreisen aufzuklären und somit die Lücke zwischen der Funktionsweise eines einzelnen Neurons und der Produktion von Verhalten zu schließen.

Kontakt:
Dr. Aristides Arrenberg
Biologisches Institut I
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2581
E-Mail: aristides.arrenberg@biologie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik