Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seife aus Sand: Wissenschaftler der Uni Kassel entwickeln neuartiges umweltfreundliches Tensid

16.07.2014

Es klingt wie ein Zaubertrick: Eine Forschungsgruppe der Universität Kassel hat auf Basis von gewöhnlichem Quarzsand eine neuartige Klasse von Tensiden entwickelt. Der Stoff kann in Seifen oder Waschmitteln zum Einsatz kommen und hat gegenüber herkömmlichen Produkten eine Reihe von Vorteilen.

Der Stoff hat einen komplizierten Namen, aber er hat, was es im Haushalt braucht: Das „silanol-basierte Tensid“, das Wissenschaftler der Universität Kassel entwickelt haben, vereint wie herkömmliche Tenside Flüssigkeiten, die eigentlich nicht mischbar sind, und löst so beispielsweise das Öl von der Küchenschürze im Wasser der Waschmaschine.


Prof. Dr. Rudolf Pietschnig (Foto: Uni Kassel)

„Unser silanol-basiertes Tensid reduziert die Oberflächenspannung von Wasser in vergleichbarem Maße wie andere bekannte Tenside“, erklärt Prof. Dr. Rudolf Pietschnig, Leiter des Fachgebiets Chemische Hybridmaterialien an der nordhessischen Hochschule. Damit könnte der Stoff im Prinzip zukünftig als Kernbestandteil von Waschmitteln, Seifen, Spülmitteln und anderen Detergenzien zum Einsatz kommen.

Im Gegensatz zu phosphathaltigen Waschmitteln ist das neuartige Tensid für die Umwelt unschädlich, wie Pietschnig erläutert: „Insbesondere führt er über das Abwasser nicht zur Eutrophierung von Gewässern“, also zur Anreicherung mit Nährstoffen, die in einem vermehrten Wachstum von Algen und anderen Pflanzen resultiert und Gewässer „umkippen“ lassen kann.

Zudem haben Tests ergeben, dass das Tensid für menschliche Zellen ungiftig ist. Die Neuentwicklung hat aber noch einen weiteren Vorteil: „Die Ausgangsstoffe lassen sich aus gewöhnlichem Quarzsand herstellen“, so der Wissenschaftler, „der wiederum aus den zwei häufigsten chemischen Elementen der Erdkruste besteht und daher als Ressource so schnell nicht knapp werden dürfte.“

„Infrastruktur zur industriellen Produktion ist in Deutschland vorhanden“

Bis aus dem Sand ein Tensid wurde, waren mehrere Verarbeitungsschritte nötig: Industriell wird der Sand zunächst zu Silicium reduziert und dann mittels Direktsynthese zu Organosiliciumverbindungen weiter umgesetzt, ganz wie bei der Silikonherstellung. Der entscheidende Schritt war dann die Synthese zu einer besonders stabilen Variante von dabei auftretenden Zwischenprodukten, eines sogenannten Silantriols.

Dabei handelt es sich um ein Molekül, bei dem sich drei OH-Gruppen um ein Siliciumatom gruppieren und an eine vierte Stelle ein organischer Bestandteil angedockt wird. Pietschnigs Forschungsgruppe baute den Stoff so um, dass er stabil genug ist, um sich nicht von selbst zu verändern, zugleich aber geeignet ist, um Fett in Wasser zu lösen. „Silantriole werden eigentlich seit rund 50 Jahren recht intensiv untersucht“, berichtet Pietschnig. „Offenbar hatte aber noch niemand daran gedacht, daraus ein Tensid herzustellen.“

Das sei einerseits durchaus überraschend, so Pietschnig, „andererseits war die Synthese auch nicht ganz einfach.“ Die Ergebnisse veröffentlichten Pietschnig und seine Mitarbeiterin Dr. Natascha Hurkes vom Institut für Chemie mit einem interdisziplinären Team der Universitäten Kassel (Dr. Malte Bussiek, Institut für Biologie) und Graz im renommierten Fachmagazin „Chemistry“, der Artikel ist soeben online erschienen.

Die Kasseler Forschungsgruppe hat das neue Tensid bislang nur im Labormaßstab hergestellt. Grundsätzlich steht einer industriellen Produktion in Deutschland aber nichts im Wege: „Die Infrastruktur wäre prinzipiell vorhanden, da deutsche Unternehmen traditionell bei der Organosiliciumchemie gut aufgestellt sind. Bei der Herstellung von Silikonen treten Silanole normalerweise als instabile Zwischenprodukte auf“, so Pietschnig.

Allerdings stehen für eine wirtschaftliche Umsetzung noch Prozessoptimierungen für den industriellen Maßstab aus. Der nachhaltige Charakter derartiger Materialien wird klar, wenn man sich vor Augen führt, dass sie in der Umwelt oder bei der Verbrennung in der Regel einfach wieder in SiO2, CO2 und Wasser umgewandelt werden.

Kooperation mit Universität Graz

Prof. Dr. Rudolf Pietschnig ist gebürtiger Österreicher und entwickelte das „silanol-basierte Tensid“ in Zusammenarbeit mit einer Forschungsgruppe der Universität Graz. Pietschnig leitet das Fachgebiet Chemische Hybridmaterialien am Institut für Chemie der Universität Kassel seit 2011 und ist Mitglied des interdisziplinären Zentrums für Nanostrukturforschung (CINSaT). International ist er Teil des EU-Netzwerks SIPs (Smart Inorganic Polymers) und einer der beiden deutschen Vertreter im Management Committee dieser Initiative, die sich der Entwicklung innovativer Kunststoffe zum Ersatz rein petrochemischer Funktionsmaterialien widmet, und durch COST (European Cooperation in Science and Technology) finanziert wird. Zudem ist er Vorsitzender des Kasseler Ortsverbands der Gesellschaft Deutscher Chemiker (GDCh). 


Artikel „Silanol Based Surfactants – Synthetic Access and Properties of an Innovative Class of Environmental
Benign Detergents” online unter http://onlinelibrary.wiley.com/doi/10.1002/chem.201402857/pdf)

Kontakt:
Prof. Dr. Rudolf Pietschnig
Universität Kassel
Fachgebiet Chemische Hybridmaterialien
www.uni-kassel.de/go/hybrid  

Sebastian Mense
Universität Kassel
Kommunikation, Presse- und Öffentlichkeitsarbeit
Tel.: +49 561 804 1961
Email: presse@uni-kassel.de

Weitere Informationen:

http://www.uni-kassel.de/uni/nc/universitaet/nachrichten/article/waschmittel-aus...

Sebastian Mense | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie