Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen bei Nacht und Tag - Fledermäuse nehmen UV-Licht wahr

30.07.2009
Deutsche Wissenschaftler entdecken Sinneszellen zum Farbensehen bei Fledermäusen

Fledermäuse besitzen in ihrer Netzhaut auch Lichtsinneszellen mit Sehpigmenten für das Tages- und Farbensehen. Diese so genannten Zapfen kommen zwar im Vergleich zu den fürs Nachtsehen nötigen Stäbchen relativ selten vor, sie ermöglichen den nachtaktiven Tieren jedoch Tageslicht-Sehen mit erhöhter Empfindlichkeit für ultraviolettes (UV) Licht.


Brillenblattnase (Carollia perspicillata)
Bild: Cornelia Hagemann, Goethe-Universität Frankfurt/M.


Lichtsinneszellen in der Netzhaut der Langzungenfledermaus. Immunfluoreszenz-Doppelfärbung mit Antikörpern gegen die Zapfenopsine, L-Zapfen erscheinen in Grün, S-Zapfen in Magenta. In den dunklen Bereichen zwischen den Zapfen liegen die zahlreichen Stäbchen, die hier nicht angefärbt sind (Maßstab entspricht 50 Tausendstel Millimeter). Bild: Brigitte Müller

Wissenschaftlern vom Frankfurter Max-Planck-Institut für Hirnforschung und der Universität Oldenburg zufolge helfen die Zapfen den Fledermäusen während der Dämmerung bei der Orientierung und der frühzeitigen Erkennung von Raubvögeln. Von besonderem Vorteil sind die UV-empfindlichen Zapfen bei der Suche nach UV-reflektierenden Blüten. (PLoS ONE, 28. Juli 2009)

Lange Zeit sind Wissenschaftler aufgrund von Gewebeuntersuchungen davon ausgegangen, dass die Netzhaut (Retina) im Auge von Fledermäusen lediglich helligkeitsempfindliche Stäbchen enthält. Genanalysen haben jedoch zwischenzeitlich ergeben, dass diese nachtaktiven Tiere auch Gene zur Bildung zweier Zapfen-Sehpigmente für unterschiedliche Wellenlängen des Lichts besitzen.

Brigitte Müller und ihre Kollegen vom Max-Planck-Institut für Hirnforschung in Frankfurt/Main analysierten deshalb die Sehzellen-Ausstattung zweier in Mittel- und Südamerika beheimateten Blüten besuchenden Fledermausarten, der Langzungenfledermaus Glossophaga soricina und der Brillenblattnase Carollia perspicillata. Zur Identifizierung der verschiedenen Sehzellen verwendeten die Forscher die Methode der Antikörper-Färbung. Damit können die Sehpigmente in den Sehzellen sichtbar gemacht werden. Neben der erwarteten hohen Stäbchendichte - Voraussetzung für das Sehen bei Nacht - fanden die Wissenschaftler auch Zapfen, die 2-4 Prozent der Sehsinneszellen ausmachten. "Dieser Anteil erscheint gering, aber aus Studien an anderen dämmerungsaktiven Tieren wie zum Beispiel Mäusen oder Katzen wissen wir, dass er ausreicht, um die Tiere auch bei Tageslicht sehen zu lassen", sagt Brigitte Müller. Darüber hinaus zeigte die Untersuchung, dass die Fledermäuse Zapfen mit zwei unterschiedlichen Sehpigmenten besitzen: die so genannten S-Zapfen mit hoher Empfindlichkeit für kurzwelliges Licht (UV) und L-Zapfen für langwelliges Licht (gelbgrün). Zusammen mit Wissenschaftlern der Universität Oldenburg gelang durch elektroretinographische Messungen (ERG) auch der Nachweis, dass UV-Licht die Zapfen tatsächlich besonders stark erregt.

Fledermäuse profitieren von farbtüchtigen Augen
Für die Forscher ist damit klar, dass die erhöhte UV-Empfindlichkeit der untersuchten Tiere auf die Zapfen in der Netzhaut zurückzuführen ist. Zumal UV-Licht die Hornhaut und Linse des Fledermausauges durchdringen kann und bis zur Netzhaut gelangt. "Diese Ergebnisse lassen den Schluss zu, dass Blattnasen-Fledermäuse UV-Licht wahrnehmen können. Außerdem sind sie mit ihren zwei Zapfentypen prinzipiell in der Lage, Farben zu unterscheiden", erklärt Brigitte Müller. Obwohl Fledermäuse kleine Augen haben, besitzen sie im Gehirn gut ausgebildete Sehzentren. Auch deshalb sind die Wissenschaftler überzeugt, dass der Sehsinn für die Tiere lebenswichtig ist. Denn nicht alle Fledermausarten leben ausschließlich in Dunkelheit - je nach Nistplatz können sie tagsüber auch einer hellen Umgebung ausgesetzt sein.
Fledermäuse benutzen zur Orientierung im Nahbereich in erster Linie ihr ausgezeichnetes Echoortungssystem. Die Tiere können so Hindernisse oder Beutetiere wahrnehmen und umfliegen bzw. ansteuern. Für Entfernungen ab 10 Metern wird die Echoortung allerdings ungenau, da die akustische Umgebung zu komplex wird und zu viele Störgeräusche auftreten. Der Sehsinn erleichtert somit die frühzeitige Erkennung von Feinden, die Nahrungssuche und die Orientierung auf längeren Flugstrecken. Für Blüten besuchende Fledermäuse wie die hier untersuchten sollte das UV-Sehen zudem den Erfolg bei der Futtersuche steigern, da viele der von Fledermäusen besuchten Blüten UV-Licht besonders stark reflektieren.

[BM]

Originalveröffentlichung:

Brigitte Müller, Martin Glösmann, Leo Peichl, Gabriel C. Knop, Cornelia Hagemann and Josef Ammermüller
Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors
PLoS ONE 4(7): e6390. doi:10.1371/journal.pone.0006390, 2009
Weitere Informationen erhalten Sie von:
Dr. Brigitte Müller
Max-Planck-Institut für Hirnforschung, Frankfurt/Main
Tel.: +49 69 96769 236
Fax: +49 69 96769 206
E-Mail: bmueller@mpih-frankfurt.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE