Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen bei Nacht und Tag - Fledermäuse nehmen UV-Licht wahr

30.07.2009
Deutsche Wissenschaftler entdecken Sinneszellen zum Farbensehen bei Fledermäusen

Fledermäuse besitzen in ihrer Netzhaut auch Lichtsinneszellen mit Sehpigmenten für das Tages- und Farbensehen. Diese so genannten Zapfen kommen zwar im Vergleich zu den fürs Nachtsehen nötigen Stäbchen relativ selten vor, sie ermöglichen den nachtaktiven Tieren jedoch Tageslicht-Sehen mit erhöhter Empfindlichkeit für ultraviolettes (UV) Licht.


Brillenblattnase (Carollia perspicillata)
Bild: Cornelia Hagemann, Goethe-Universität Frankfurt/M.


Lichtsinneszellen in der Netzhaut der Langzungenfledermaus. Immunfluoreszenz-Doppelfärbung mit Antikörpern gegen die Zapfenopsine, L-Zapfen erscheinen in Grün, S-Zapfen in Magenta. In den dunklen Bereichen zwischen den Zapfen liegen die zahlreichen Stäbchen, die hier nicht angefärbt sind (Maßstab entspricht 50 Tausendstel Millimeter). Bild: Brigitte Müller

Wissenschaftlern vom Frankfurter Max-Planck-Institut für Hirnforschung und der Universität Oldenburg zufolge helfen die Zapfen den Fledermäusen während der Dämmerung bei der Orientierung und der frühzeitigen Erkennung von Raubvögeln. Von besonderem Vorteil sind die UV-empfindlichen Zapfen bei der Suche nach UV-reflektierenden Blüten. (PLoS ONE, 28. Juli 2009)

Lange Zeit sind Wissenschaftler aufgrund von Gewebeuntersuchungen davon ausgegangen, dass die Netzhaut (Retina) im Auge von Fledermäusen lediglich helligkeitsempfindliche Stäbchen enthält. Genanalysen haben jedoch zwischenzeitlich ergeben, dass diese nachtaktiven Tiere auch Gene zur Bildung zweier Zapfen-Sehpigmente für unterschiedliche Wellenlängen des Lichts besitzen.

Brigitte Müller und ihre Kollegen vom Max-Planck-Institut für Hirnforschung in Frankfurt/Main analysierten deshalb die Sehzellen-Ausstattung zweier in Mittel- und Südamerika beheimateten Blüten besuchenden Fledermausarten, der Langzungenfledermaus Glossophaga soricina und der Brillenblattnase Carollia perspicillata. Zur Identifizierung der verschiedenen Sehzellen verwendeten die Forscher die Methode der Antikörper-Färbung. Damit können die Sehpigmente in den Sehzellen sichtbar gemacht werden. Neben der erwarteten hohen Stäbchendichte - Voraussetzung für das Sehen bei Nacht - fanden die Wissenschaftler auch Zapfen, die 2-4 Prozent der Sehsinneszellen ausmachten. "Dieser Anteil erscheint gering, aber aus Studien an anderen dämmerungsaktiven Tieren wie zum Beispiel Mäusen oder Katzen wissen wir, dass er ausreicht, um die Tiere auch bei Tageslicht sehen zu lassen", sagt Brigitte Müller. Darüber hinaus zeigte die Untersuchung, dass die Fledermäuse Zapfen mit zwei unterschiedlichen Sehpigmenten besitzen: die so genannten S-Zapfen mit hoher Empfindlichkeit für kurzwelliges Licht (UV) und L-Zapfen für langwelliges Licht (gelbgrün). Zusammen mit Wissenschaftlern der Universität Oldenburg gelang durch elektroretinographische Messungen (ERG) auch der Nachweis, dass UV-Licht die Zapfen tatsächlich besonders stark erregt.

Fledermäuse profitieren von farbtüchtigen Augen
Für die Forscher ist damit klar, dass die erhöhte UV-Empfindlichkeit der untersuchten Tiere auf die Zapfen in der Netzhaut zurückzuführen ist. Zumal UV-Licht die Hornhaut und Linse des Fledermausauges durchdringen kann und bis zur Netzhaut gelangt. "Diese Ergebnisse lassen den Schluss zu, dass Blattnasen-Fledermäuse UV-Licht wahrnehmen können. Außerdem sind sie mit ihren zwei Zapfentypen prinzipiell in der Lage, Farben zu unterscheiden", erklärt Brigitte Müller. Obwohl Fledermäuse kleine Augen haben, besitzen sie im Gehirn gut ausgebildete Sehzentren. Auch deshalb sind die Wissenschaftler überzeugt, dass der Sehsinn für die Tiere lebenswichtig ist. Denn nicht alle Fledermausarten leben ausschließlich in Dunkelheit - je nach Nistplatz können sie tagsüber auch einer hellen Umgebung ausgesetzt sein.
Fledermäuse benutzen zur Orientierung im Nahbereich in erster Linie ihr ausgezeichnetes Echoortungssystem. Die Tiere können so Hindernisse oder Beutetiere wahrnehmen und umfliegen bzw. ansteuern. Für Entfernungen ab 10 Metern wird die Echoortung allerdings ungenau, da die akustische Umgebung zu komplex wird und zu viele Störgeräusche auftreten. Der Sehsinn erleichtert somit die frühzeitige Erkennung von Feinden, die Nahrungssuche und die Orientierung auf längeren Flugstrecken. Für Blüten besuchende Fledermäuse wie die hier untersuchten sollte das UV-Sehen zudem den Erfolg bei der Futtersuche steigern, da viele der von Fledermäusen besuchten Blüten UV-Licht besonders stark reflektieren.

[BM]

Originalveröffentlichung:

Brigitte Müller, Martin Glösmann, Leo Peichl, Gabriel C. Knop, Cornelia Hagemann and Josef Ammermüller
Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors
PLoS ONE 4(7): e6390. doi:10.1371/journal.pone.0006390, 2009
Weitere Informationen erhalten Sie von:
Dr. Brigitte Müller
Max-Planck-Institut für Hirnforschung, Frankfurt/Main
Tel.: +49 69 96769 236
Fax: +49 69 96769 206
E-Mail: bmueller@mpih-frankfurt.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie