Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen und Erkennen

06.08.2010
BMBF stellt acht Millionen Euro für Tübinger Bernstein-Zentrum zur Erforschung der Sinneswahrnehmung zur Verfügung

Wir sehen nur ein graues, abgerundetes Stück Plastik unter der Zeitung hervorlugen – und trotzdem wissen wir sofort, dass wir das Handy endlich gefunden haben. Unser Gehirn verrechnet die von den Augen gelieferte Sinnesinformation mit Erfahrungswerten und kann so die fehlende Information problemlos ergänzen.

In einem komplexen Verarbeitungsprozess vergleicht es das Vorwissen über die physikalische Beschaffenheit der Welt mit den aufgenommenen Signalen. Die Wissenschaftler am neu gegründeten Tübinger Bernstein-Zentrum für Computational Neuroscience (theoretische Neurowissenschaften) wollen herausfinden, wie diese Vorgänge im Gehirn ablaufen. An dem Zentrum sind Wissenschaftler des Max-Planck-Instituts für biologische Kybernetik und der Universität Tübingen beteiligt, darunter das Werner Reichardt-Centrum für Integrative Neurowissenschaften, außerdem das Universitätsklinikum Tübingen sowie das Hertie-Institut für klinische Hirnforschung. Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt das Zentrum mit rund acht Millionen Euro.

Das neue Forschungszentrum ist Teil des bundesweiten Bernstein-Netzwerks „Computational Neuroscience“, das im Jahre 2004 ins Leben gerufen wurde und dem mittlerweile rund 200 Arbeitsgruppen an 20 verschiedenen Standorten angehören. Koordinator des Tübinger Bernstein-Zentrums ist Matthias Bethge, Wissenschaftler am Institut für Theoretische Physik der Universität Tübingen und am Max-Planck-Institut für biologische Kybernetik. Bethge erhielt bereits 2006 den renommierten „Bernstein-Preis für Computational Neuroscience“ und ist seitdem Mitglied des nationalen Bernstein-Netzwerks.

„Perzeptuelle Inferenz" nennen Wissenschaftler die Fähigkeit des Gehirns, Sinnesinformationen und Vorwissen zu einer schlüssigen Wahrnehmung unserer Umwelt zu kombinieren. Die Tübinger Forscher untersuchen, wie das komplexe Zusammenspiel vieler Zellen im Gehirn diese Leistung hervorbringen und Unsicherheiten aus den visuellen Eingangssignalen heraus rechnen kann. Welches Vorwissen ist nötig, um die Welt, die wir sehen, zu verstehen? Wie wirkt sich dieses Wissen auf die Sinneswahrnehmung aus? Wie wird Vorwissen im Gehirn gespeichert und wieder abgerufen? „Die Tatsache, dass unser Gehirn solche Probleme scheinbar mühelos löst, ist umso bemerkenswerter, als dass es bis heute keine Computeralgorithmen gibt, die auch nur annähernd an diese Leistung herankämen", sagt Bethge.

Die Tübinger Wissenschaftler konzentrieren sich hauptsächlich auf die visuelle Wahrnehmung, wollen aber auch verstehen, wie die unterschiedlichen Sinnessysteme zusammenarbeiten, um ein möglichst realistisches Bild der Umwelt zu erzeugen.

Um das Rätsel der Sinneswahrnehmung zu lösen, nutzen die Forscher neuartige experimentelle Techniken, mit denen sie die Aktivität von großen Gruppen von Nervenzellen gleichzeitig und sehr genau messen können. Aufbauend auf theoretische Studien und mit Hilfe von neuen Datenanalyseverfahren sollen diese Ansätze dazu genutzt werden, grundlegende Prinzipien der neuronalen Kodierung und der Inferenzprozesse zu entschlüsseln. Außerdem wird ein tieferes Verständnis darüber, wie unser Gehirn eine schlüssige Wahrnehmung der Umwelt erzeugt, neue klinische und technologische Anwendungsmöglichkeiten eröffnen, zum Beispiel im Bereich des maschinellen Sehens oder in der Entwicklung und Verbesserung neuronaler Sinnesprothesen.

Weitere Informationen:

Das Netzwerk Computational Neuroscience:
http://www.gesundheitsforschung-bmbf.de/de/784.php
Weitere Informationen über die Forschung von Matthias Bethge:
http://www.kyb.mpg.de/~mbethge
In Verbindung stehende Nachrichten:
http://tuebingen.mpg.de/nc/aktuelles-presse/pressemitteilungen/detail/keine-stille-post-im-gehirn-kommunikation-zwischen-nervenzellen-effektiver-als-gedacht.html
Ansprechpartner:
Prof. Dr. Matthias Bethge
Universität Tübingen und Werner Reichardt-Centrum für Integrative Neurowissenschaften,
Max-Planck-Institut für biologische Kybernetik
Tel: +49 7071 601-1770
E-Mail: http://mbethge[at]tuebingen.mpg.de
Michael Seifert
Hochschulkommunikation –Presse und Forschungsberichterstattung
Universität Tübingen
Tel: +49 7071 29-76789
E-Mail: http://michael.seifert[at]uni-tuebingen.de
Stephanie Bertenbreiter
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biologische Kybernetik
Tel: +49 7071 601-333
E-Mail: http://presse[at]tuebingen.mpg.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise