Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen als Balanceakt

30.03.2009
Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Berlin und des Massachusetts Institute of Technology haben herausgefunden, wie neuronale Verschaltungen die ersten Schritte der Bildverarbeitung im Gehirn realisieren.

Wie sie zeigen konnten, ist ein präzises Gleichgewicht aus hemmenden und erregenden Signalen die Grundlage dafür, dass wir bei der Betrachtung eines Bildes zuverlässig den Verlauf von Kanten und Konturen analysieren können.

Damit wir das, was wir sehen, auch erkennen können, muss das Gehirn eine ganze Reihe von "Rechenleistungen" erbringen. In den ersten Schritten neuronaler Bildverarbeitung wird die Bildinformation, die auf die Retina fällt an das Großhirn übertragen und dort von stark gekoppelten Netzwerken von Neuronen verarbeitet. Dabei ist entscheidend, wie stark die erregende sowie die hemmende Rückkoppelung ist: zu starke Erregung könnte zu migräne- und epilepsieartigen Zuständen, zu starke Hemmung andererseits zu einer Blockade der Verarbeitung führen.

Die genauen neuronalen Verschaltungen, die dem zugrunde liegen, haben nun Wissenschaftlerinnen und Wissenschaftler des Bernstein Zentrums für Computational Neuroscience und der Technischen Universität Berlin gemeinsam mit ihren Kollegen am Massachusetts Institute of Technology (USA) systematisch analysiert. Ihre Ergebnisse zeigen, dass erregende und hemmende Signale in einem präzisen Gleichgewicht stehen müssen und dabei erstaunlich nah an der Grenze zu einer kritischen Überaktivierung sind. Die Arbeit trägt außerdem dazu bei, besser zu verstehen, wie Aufmerksamkeitsprozesse das Sehverhalten beeinflussen.

Eine Aufgabe der primären Sehrinde, der ersten Verschaltungsstufe für Bildinformationen im Gehirn, besteht darin, den Verlauf von Kanten und Konturen zu analysieren. Zellen in diesem Hirnareal reagieren bevorzugt auf Kanten mit festgelegter Orientierung - einige sind auf horizontale Richtungen spezialisiert, andere zum Beispiel auf Konturen in einem Winkel von 40 Grad. Es gibt unterschiedliche wissenschaftliche Modelle, die erklären, wie die Funktion dieser Nervenzellen zustande kommt.

Um zwischen verschiedenen möglichen Mechanismen zu unterscheiden, berücksichtigten die Wissenschaftler um Prof. Dr. Klaus Obermayer, TU Berlin, in ihrer Studie feine Unterschiede in den Eigenschaften der Zellen. Die Zellen der Sehrinde erhalten neuronale Eingangssignale von ihren jeweiligen Nachbarzellen. Je nachdem, wo in der Sehrinde die Zelle liegt, ist aber auch die Zusammensetzung der Eingangssignale recht unterschiedlich. Dennoch erfüllen alle Zellen die gleiche Rechenaufgabe: Sie reagieren sehr präzise auf die Orientierung von Linien. In ihrem Modell testen die Wissenschaftlerinnen und Wissenschaftler systematisch, welches Verschaltungsmuster die Reaktion aller Zellen auf ihre unterschiedlichen Eingangssignale widerspiegeln kann.

"Damit haben wir nicht nur ein Modell gefunden, das die Daten erklärt, sondern auch ausgeschlossen, dass ein anderes Modell die Daten ebenso gut erklären könnte", sagt Obermayer. Das Modell der Wissenschaftler zeigt, dass es sehr viele sowohl aktivierende als auch hemmende lokale Kopplung zwischen den Zellen der primären Sehrinde gibt. Der Beitrag der rückgekoppelten Signale übersteigt dabei den Beitrag der direkten Eingangssignale aus der Netzhaut um das doppelte.

Warum aber investiert das Gehirn so viel Energie in die gleichzeitige Aktivierung und Hemmung bestimmter Zellen? Könnte es nicht theoretisch auch einfacher gehen, Konturen und Kanten zu berechnen? Auch auf diese Fragen haben die Wissenschaftler eine plausible Antwort: Wie sie in ihren Computersimulationen zeigten, führt die komplexe Verschaltungsstruktur dazu, dass sich die Aktivität der Zellen in der primären Sehrinde sehr leicht durch kleine Einflüsse von außen justieren lässt. Solche Justierungen könnten zum Beispiel durch Aufmerksamkeitsprozesse vorgenommen werden. Es ist bereits bekannt, dass höhere Hirnfunktionen wie Aufmerksamkeit oder Vorwissen schon in die ersten Schritte visueller Bildverarbeitung im Gehirn eingreifen - wenn wir etwas aufmerksam betrachten, sind die Neurone der Sehrinde aktiver und wir sehen schärfer. Das Modell der Wissenschaftler trägt nun dazu bei, die zugrundeliegenden neurobiologischen Mechanismen besser zu verstehen.

Originalveröffentlichung:
Marcel Stimberg, Klaus Wimmer, Robert Martin, Lars Schwabe, Jorge Mariño, James Schummers, David C. Lyon, Mriganka Sur und Klaus Obermayer. The Operating Regime of Local Computations in Primary Visual Cortex. Cereb Cortex. 2009 Feb 16. [Epub ahead of print]. doi:10.1093/cercor/bhn240

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Klaus Obermayer, TU Berlin, Fakultät IV - Elektrotechnik und Informatik, Tel: 030/314-73442, Fax: -73121, E-Mail:oby@cs.tu-berlin.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://ni.cs.tu-berlin.de/
http://www.bccn-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie