Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen als Balanceakt

30.03.2009
Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Berlin und des Massachusetts Institute of Technology haben herausgefunden, wie neuronale Verschaltungen die ersten Schritte der Bildverarbeitung im Gehirn realisieren.

Wie sie zeigen konnten, ist ein präzises Gleichgewicht aus hemmenden und erregenden Signalen die Grundlage dafür, dass wir bei der Betrachtung eines Bildes zuverlässig den Verlauf von Kanten und Konturen analysieren können.

Damit wir das, was wir sehen, auch erkennen können, muss das Gehirn eine ganze Reihe von "Rechenleistungen" erbringen. In den ersten Schritten neuronaler Bildverarbeitung wird die Bildinformation, die auf die Retina fällt an das Großhirn übertragen und dort von stark gekoppelten Netzwerken von Neuronen verarbeitet. Dabei ist entscheidend, wie stark die erregende sowie die hemmende Rückkoppelung ist: zu starke Erregung könnte zu migräne- und epilepsieartigen Zuständen, zu starke Hemmung andererseits zu einer Blockade der Verarbeitung führen.

Die genauen neuronalen Verschaltungen, die dem zugrunde liegen, haben nun Wissenschaftlerinnen und Wissenschaftler des Bernstein Zentrums für Computational Neuroscience und der Technischen Universität Berlin gemeinsam mit ihren Kollegen am Massachusetts Institute of Technology (USA) systematisch analysiert. Ihre Ergebnisse zeigen, dass erregende und hemmende Signale in einem präzisen Gleichgewicht stehen müssen und dabei erstaunlich nah an der Grenze zu einer kritischen Überaktivierung sind. Die Arbeit trägt außerdem dazu bei, besser zu verstehen, wie Aufmerksamkeitsprozesse das Sehverhalten beeinflussen.

Eine Aufgabe der primären Sehrinde, der ersten Verschaltungsstufe für Bildinformationen im Gehirn, besteht darin, den Verlauf von Kanten und Konturen zu analysieren. Zellen in diesem Hirnareal reagieren bevorzugt auf Kanten mit festgelegter Orientierung - einige sind auf horizontale Richtungen spezialisiert, andere zum Beispiel auf Konturen in einem Winkel von 40 Grad. Es gibt unterschiedliche wissenschaftliche Modelle, die erklären, wie die Funktion dieser Nervenzellen zustande kommt.

Um zwischen verschiedenen möglichen Mechanismen zu unterscheiden, berücksichtigten die Wissenschaftler um Prof. Dr. Klaus Obermayer, TU Berlin, in ihrer Studie feine Unterschiede in den Eigenschaften der Zellen. Die Zellen der Sehrinde erhalten neuronale Eingangssignale von ihren jeweiligen Nachbarzellen. Je nachdem, wo in der Sehrinde die Zelle liegt, ist aber auch die Zusammensetzung der Eingangssignale recht unterschiedlich. Dennoch erfüllen alle Zellen die gleiche Rechenaufgabe: Sie reagieren sehr präzise auf die Orientierung von Linien. In ihrem Modell testen die Wissenschaftlerinnen und Wissenschaftler systematisch, welches Verschaltungsmuster die Reaktion aller Zellen auf ihre unterschiedlichen Eingangssignale widerspiegeln kann.

"Damit haben wir nicht nur ein Modell gefunden, das die Daten erklärt, sondern auch ausgeschlossen, dass ein anderes Modell die Daten ebenso gut erklären könnte", sagt Obermayer. Das Modell der Wissenschaftler zeigt, dass es sehr viele sowohl aktivierende als auch hemmende lokale Kopplung zwischen den Zellen der primären Sehrinde gibt. Der Beitrag der rückgekoppelten Signale übersteigt dabei den Beitrag der direkten Eingangssignale aus der Netzhaut um das doppelte.

Warum aber investiert das Gehirn so viel Energie in die gleichzeitige Aktivierung und Hemmung bestimmter Zellen? Könnte es nicht theoretisch auch einfacher gehen, Konturen und Kanten zu berechnen? Auch auf diese Fragen haben die Wissenschaftler eine plausible Antwort: Wie sie in ihren Computersimulationen zeigten, führt die komplexe Verschaltungsstruktur dazu, dass sich die Aktivität der Zellen in der primären Sehrinde sehr leicht durch kleine Einflüsse von außen justieren lässt. Solche Justierungen könnten zum Beispiel durch Aufmerksamkeitsprozesse vorgenommen werden. Es ist bereits bekannt, dass höhere Hirnfunktionen wie Aufmerksamkeit oder Vorwissen schon in die ersten Schritte visueller Bildverarbeitung im Gehirn eingreifen - wenn wir etwas aufmerksam betrachten, sind die Neurone der Sehrinde aktiver und wir sehen schärfer. Das Modell der Wissenschaftler trägt nun dazu bei, die zugrundeliegenden neurobiologischen Mechanismen besser zu verstehen.

Originalveröffentlichung:
Marcel Stimberg, Klaus Wimmer, Robert Martin, Lars Schwabe, Jorge Mariño, James Schummers, David C. Lyon, Mriganka Sur und Klaus Obermayer. The Operating Regime of Local Computations in Primary Visual Cortex. Cereb Cortex. 2009 Feb 16. [Epub ahead of print]. doi:10.1093/cercor/bhn240

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Klaus Obermayer, TU Berlin, Fakultät IV - Elektrotechnik und Informatik, Tel: 030/314-73442, Fax: -73121, E-Mail:oby@cs.tu-berlin.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://ni.cs.tu-berlin.de/
http://www.bccn-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie