Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen als Balanceakt

30.03.2009
Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Berlin und des Massachusetts Institute of Technology haben herausgefunden, wie neuronale Verschaltungen die ersten Schritte der Bildverarbeitung im Gehirn realisieren.

Wie sie zeigen konnten, ist ein präzises Gleichgewicht aus hemmenden und erregenden Signalen die Grundlage dafür, dass wir bei der Betrachtung eines Bildes zuverlässig den Verlauf von Kanten und Konturen analysieren können.

Damit wir das, was wir sehen, auch erkennen können, muss das Gehirn eine ganze Reihe von "Rechenleistungen" erbringen. In den ersten Schritten neuronaler Bildverarbeitung wird die Bildinformation, die auf die Retina fällt an das Großhirn übertragen und dort von stark gekoppelten Netzwerken von Neuronen verarbeitet. Dabei ist entscheidend, wie stark die erregende sowie die hemmende Rückkoppelung ist: zu starke Erregung könnte zu migräne- und epilepsieartigen Zuständen, zu starke Hemmung andererseits zu einer Blockade der Verarbeitung führen.

Die genauen neuronalen Verschaltungen, die dem zugrunde liegen, haben nun Wissenschaftlerinnen und Wissenschaftler des Bernstein Zentrums für Computational Neuroscience und der Technischen Universität Berlin gemeinsam mit ihren Kollegen am Massachusetts Institute of Technology (USA) systematisch analysiert. Ihre Ergebnisse zeigen, dass erregende und hemmende Signale in einem präzisen Gleichgewicht stehen müssen und dabei erstaunlich nah an der Grenze zu einer kritischen Überaktivierung sind. Die Arbeit trägt außerdem dazu bei, besser zu verstehen, wie Aufmerksamkeitsprozesse das Sehverhalten beeinflussen.

Eine Aufgabe der primären Sehrinde, der ersten Verschaltungsstufe für Bildinformationen im Gehirn, besteht darin, den Verlauf von Kanten und Konturen zu analysieren. Zellen in diesem Hirnareal reagieren bevorzugt auf Kanten mit festgelegter Orientierung - einige sind auf horizontale Richtungen spezialisiert, andere zum Beispiel auf Konturen in einem Winkel von 40 Grad. Es gibt unterschiedliche wissenschaftliche Modelle, die erklären, wie die Funktion dieser Nervenzellen zustande kommt.

Um zwischen verschiedenen möglichen Mechanismen zu unterscheiden, berücksichtigten die Wissenschaftler um Prof. Dr. Klaus Obermayer, TU Berlin, in ihrer Studie feine Unterschiede in den Eigenschaften der Zellen. Die Zellen der Sehrinde erhalten neuronale Eingangssignale von ihren jeweiligen Nachbarzellen. Je nachdem, wo in der Sehrinde die Zelle liegt, ist aber auch die Zusammensetzung der Eingangssignale recht unterschiedlich. Dennoch erfüllen alle Zellen die gleiche Rechenaufgabe: Sie reagieren sehr präzise auf die Orientierung von Linien. In ihrem Modell testen die Wissenschaftlerinnen und Wissenschaftler systematisch, welches Verschaltungsmuster die Reaktion aller Zellen auf ihre unterschiedlichen Eingangssignale widerspiegeln kann.

"Damit haben wir nicht nur ein Modell gefunden, das die Daten erklärt, sondern auch ausgeschlossen, dass ein anderes Modell die Daten ebenso gut erklären könnte", sagt Obermayer. Das Modell der Wissenschaftler zeigt, dass es sehr viele sowohl aktivierende als auch hemmende lokale Kopplung zwischen den Zellen der primären Sehrinde gibt. Der Beitrag der rückgekoppelten Signale übersteigt dabei den Beitrag der direkten Eingangssignale aus der Netzhaut um das doppelte.

Warum aber investiert das Gehirn so viel Energie in die gleichzeitige Aktivierung und Hemmung bestimmter Zellen? Könnte es nicht theoretisch auch einfacher gehen, Konturen und Kanten zu berechnen? Auch auf diese Fragen haben die Wissenschaftler eine plausible Antwort: Wie sie in ihren Computersimulationen zeigten, führt die komplexe Verschaltungsstruktur dazu, dass sich die Aktivität der Zellen in der primären Sehrinde sehr leicht durch kleine Einflüsse von außen justieren lässt. Solche Justierungen könnten zum Beispiel durch Aufmerksamkeitsprozesse vorgenommen werden. Es ist bereits bekannt, dass höhere Hirnfunktionen wie Aufmerksamkeit oder Vorwissen schon in die ersten Schritte visueller Bildverarbeitung im Gehirn eingreifen - wenn wir etwas aufmerksam betrachten, sind die Neurone der Sehrinde aktiver und wir sehen schärfer. Das Modell der Wissenschaftler trägt nun dazu bei, die zugrundeliegenden neurobiologischen Mechanismen besser zu verstehen.

Originalveröffentlichung:
Marcel Stimberg, Klaus Wimmer, Robert Martin, Lars Schwabe, Jorge Mariño, James Schummers, David C. Lyon, Mriganka Sur und Klaus Obermayer. The Operating Regime of Local Computations in Primary Visual Cortex. Cereb Cortex. 2009 Feb 16. [Epub ahead of print]. doi:10.1093/cercor/bhn240

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Klaus Obermayer, TU Berlin, Fakultät IV - Elektrotechnik und Informatik, Tel: 030/314-73442, Fax: -73121, E-Mail:oby@cs.tu-berlin.de

Dr. Katrin Weigmann | idw
Weitere Informationen:
http://ni.cs.tu-berlin.de/
http://www.bccn-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie