Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Seeanemonen rot werden: Wegweisende Forschung zur Entwicklung von Muskelzellen

15.12.2009
Nesseltiere wie Seeanemonen gehören zu den ersten Lebewesen in der Geschichte der Evolution, die Muskeln entwickelt haben.

Ulrich Technau, Entwicklungsbiologe der Universität Wien, und sein Team untersuchen, ob diese einfachen Organismen, deren Ursprung vor etwa 600 Millionen Jahren liegt, bereits die molekularen Anlagen für die Entstehung der viel komplexeren Muskulatur von Wirbeltieren in sich tragen.

Dabei gelang es den ForscherInnen zum ersten Mal, transgene Seeanemonen zu züchten - Seeanemonen, deren Muskelzellen buchstäblich rot werden. Die Ergebnisse der Studie erscheinen demnächst in der renommierten Fachzeitschrift "Proceedings of the National Academy of Sciences (PNAS)".

Wenn man die Muskeln der transgenen Seeanemonen, die Ulrich Technau und sein Team gezüchtet haben, unter fluoreszierendem Licht beobachtet, dann werden sie rot. Aber nicht aus Scham: Die EvolutionsbiologInnen haben den Nesseltieren ein Markierungsgen eingebaut, das rot fluoreszierende Proteine produziert. Dem roten Markierungsgen wurde die DNA-Kontrollsequenz des Myosin Heavy Chain-Gens, das maßgeblich an der Muskelkontraktion beteiligt ist, vorgeschaltet. Da diese Kontrollsequenz nur in ausgebildeten Muskelzellen aktiviert wird, leuchten im Organismus auch nur diese Muskelzellen rot.

In-Vivo-Analyse von fluoreszierenden Muskeln

Die erfolgreiche Zucht von transgenen Seeanemonen ist ein wichtiger Schritt auf dem Weg, die Evolution der Muskelzellen und deren embryonale Vorläufergewebe besser zu verstehen. "Bei der Embryonalentwicklung von Wirbeltieren und den allermeisten wirbellosen Tieren gehen die Muskelzellen aus dem dritten Keimblatt, dem so genannten Mesoderm hervor. Nesseltiere besitzen aber noch gar kein Mesoderm", erklärt Technau: "Dieses dritte Keimblatt hat sich erst später während der Evolution der höheren Tiere entwickelt."

Um herauszufinden, ob die Muskelzellen von Mensch und Seeanemone neben dem Muskelgen noch andere molekularen Gemeinsamkeiten haben - und damit, ob die "einfachen" Seeanemonen bereits vor 600 Millionen Jahren die evolutionäre Grundlage für die Entwicklung des Mesoderms in sich trugen -, kombinierten die Forscher die Kontrollsequenz des Myosin Heavy Chain-Gens mit dem fluoreszenten Protein. Mit Erfolg: "Nun leuchten die Muskelzellen der transgenen Tiere rot, und wir können ihren Aufbau und die Kontraktion in vivo, also beim lebenden Tier, verfolgen", erklärt Ulrich Technau: "Das erlaubt es uns nicht nur, die embryonale Bildung und Physiologie der Muskelzellen zu studieren, sondern auch, die genetische Kontrolle des Muskelgens Myosin Heavy Chain zu analysieren. Die Analyse könnte Auskunft darüber geben, ob die molekularen Faktoren der Muskelzellentwicklung bei Nesseltieren und viel komplexeren Tieren ähnlich sind."

Ulrich Technau und sein Team experimentieren bereits mit weiteren Farben: "Durch Kreuzungen ist es uns gelungen, doppelt und dreifach transgene Seeanemonenlinien zu züchten, deren Zellen je nach Typ grün, blau oder orange leuchten."

"Gene fallen nicht vom Himmel"

Da Seeanemonen ein sehr plastisches Nervensystem haben, soll es dadurch in Zukunft möglich sein, direkt unter dem Mikroskop zu beobachten, wie die Tiere neuromuskuläre Verbindungen aufbauen und steuern. Damit wollen die Forscher u.a. ihre Vermutung bestätigen, dass der evolutionäre Sprung von zwei zu drei Keimblättern seinen Ausgang bereits vor über 600 Millionen Jahren genommen hat - und auf molekularer Ebene vielleicht gar kein so großer Sprung war: "Gene fallen nicht vom Himmel", sagt Ulrich Technau: "Bereits kleinste Veränderungen in der Interaktion zwischen zwei Genen können auf morphologischer Ebene zu großen Veränderungen führen. Das erlaubt uns ein ganz neues Verständnis davon, wie Neuheiten in der Evolution entstehen."

Publikation:
A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis: AutorInnen: Eduard Renfer, Annette Amon-Hassenzahl, Patrick R. H. Steinmetz und Ulrich Technau. Erscheint in der Woche vom 14. Dezember 2009 in der Early Edition (EE) des Fachjournals "Proceedings of the National Academy of Sciences (PNAS)".
Kontakt
Univ.-Prof. Dipl.-Biol. Dr. Ulrich Technau
Leiter des Department für Molekulare Evolution und Entwicklung
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-570 00
ulrich.technau@univie.ac.at
http://public.univie.ac.at/index.php?id=21892
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
eronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.pnas.org/content/early/recent
http://www.univie.ac.at/175 -
http://public.univie.ac.at/index.php?id=21892

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen