Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Scripps Research Institute scientists describe elusive replication machinery of flu viruses

23.11.2012
Scientists at The Scripps Research Institute (TSRI) have made a major advance in understanding how flu viruses replicate within infected cells.

The researchers used cutting-edge molecular biology and electron-microscopy techniques to "see" one of influenza's essential protein complexes in unprecedented detail. The images generated in the study show flu virus proteins in the act of self-replication, highlighting the virus's vulnerabilities that are sure to be of interest to drug developers.


The new Scripps Research Institute study shows flu virus proteins in the act of self-replication. Shown here is the influenza virus, which encapsidates its RNA genome (green) with a viral nucleoprotein (blue); the influenza virus polymerase (orange) reads and copies the RNA genome. In the background is an image of influenza virus ribonucleoprotein complexes observed using cryo-electron microscopy.

Credit: Image courtesy of the Wilson, Carragher and Potter labs.

The report, which appears online in Science Express on November 22, 2012, focuses on influenza's ribonucleoprotein (RNP). RNPs contain the virus's genetic material plus the special enzyme that the virus needs to make copies of itself.

"Structural studies in this area had stalled because of the technical obstacles involved, and so this is a welcome advance," said Ian A. Wilson, the Hansen Professor of Structural Biology at TSRI and senior author of the report with TSRI Professors of Cell Biology Bridget Carragher and Clint Potter. "The data from this study give us a much clearer picture of the flu virus replication machinery."

Unveiling the Mystery of RNPs

At the core of any influenza virus lie eight RNPs, tiny molecular machines that are vital to the virus's ability to survive and spread in its hosts. Each RNP contains a segment—usually a single protein-coding gene—of the RNA-based viral genome. This viral RNA segment is coated with protective viral nucleoproteins and has a structure that resembles a twisted loop of chain. The free ends of this twisted loop are held by a flu-virus polymerase enzyme, which handles the two central tasks of viral reproduction: making new viral genomic RNA, and making the RNA gene-transcripts that will become new viral proteins.

Aside from its importance in ordinary infections, the flu polymerase contains some of the key "species barriers" that keep, for example, avian flu viruses from infecting mammals. Mutations at key points on the enzyme have enabled the virus to infect new species in the past. Thus researchers are eager to know the precise details of how the flu polymerase and the rest of the RNP interact.

Getting those details has been a real challenge. One reason is that flu RNPs are complex assemblies that are hard to produce efficiently in the lab. Flu polymerase genes are particularly resistant to being expressed in test cells, and their protein products exist in three separate pieces, or subunits, that have to somehow self-assemble. Until now, the only flu RNPs that have been reproduced in the laboratory are shortened versions whose structures aren't quite the same as those of native flu RNPs. Researchers also are limited in how much virus they can use for such studies.

The team nevertheless managed to develop a test-cell expression system that produced all of the protein and RNA components needed to make full-length flu RNPs. "We were able to get the cells to assemble these components properly so that we had working, self-replicating RNPs," said Robert N. Kirchdoerfer, a first author of the study. Kirchdoerfer was a PhD candidate in the Wilson laboratory during the study, and is now a postdoctoral research associate in the laboratory of TSRI Professor Erica Ollmann Saphire.

Kirchdoerfer eventually purified enough of these flu RNPs for electron microscope analysis at TSRI's Automated Molecular Imaging Group, which is run jointly by Carragher and Potter.

Never Seen Before

The imaging group's innovations enable researchers to analyze molecular samples more easily, in less time, and often with less starting material. "We were able, for example, to automatically collect data for several days in a row, which is unusual in electron microscopy work," said Arne Moeller, a postdoctoral research associate at the imaging group who was the other first author of the study.

Electron microscopes make high-resolution images of their tiny targets by hitting them with electrons rather than photons of light. The images revealed numerous well-defined RNP complexes. To Moeller and his colleagues' surprise, many of these appeared to have new, partial RNPs growing out of them. "They were branching—this was very exciting," he said.

"Essentially these were snapshots of flu RNPs being replicated, which had never been seen before," said Kirchdoerfer. These and other data, built up from images of tens of thousands of individual RNPs, allowed the team to put together the most complete model yet for flu-RNP structure and functions. The model includes details of how the viral polymerase binds to its RNA, how it accomplishes the tricky task of viral gene transcription, and how a separate copy of the viral polymerase assists in carrying out RNP replication. "We're now able to take a lot of what we knew before about flu virus RNP and map it onto specific parts of the RNP structure," said Kirchdoerfer.

The new flu RNP model highlights some viral weak points. One is a shape-change that a polymerase subunit—which grabs viral RNA and feeds it to the polymerase's active site on a second subunit—has to undergo during viral gene transcription. Another is key interaction between the polymerase and viral nucleoproteins. Flu RNPs are long and flexible, curving and bending in electron microscope images; and thus the structural model remains only modestly fine-grained. "You wouldn't be able to design drugs based on this model alone," said Kirchdoerfer, "but we now have a much better idea of how flu RNPs work, and that does suggest some possibilities for better flu drugs."

The study, "Organization of the Influenza Virus Replication Machinery," was funded in part by grants from the National Institutes of Health (AI058113, GM095573) and the Joint Center for Innovation in Membrane Protein Production for Structure Determination (P50GM073197). TSRI's Automated Molecular Imaging Group includes the National Resource for Automated Molecular Microscopy, which is supported by the National Institutes of Health's National Center for Research Resources (2P41RR017573-11) and the National Institute of General Medical Sciences Biomedical Technology Resource Centers (9 P41 GM103310-11)

Jann Coury | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superschneller Wellenritt im Kristall: Elektronik auf Zeitskala einzelner Lichtschwingungen möglich

Physikern der Universitäten Regensburg und Marburg ist es gelungen, die von einem starken Lichtfeld getriebene Bewegung von Elektronen in einem Halbleiter in extremer Zeitlupe zu beobachten. Dabei konnten sie ein grundlegend neues Quantenphänomen entschlüsseln. Die Ergebnisse der Wissenschaftler sind jetzt in der renommierten Fachzeitschrift „Nature“ veröffentlicht worden (DOI: 10.1038/nature14652).

Die rasante Entwicklung in der Elektronik mit Taktraten bis in den Gigahertz-Bereich hat unser Alltagsleben revolutioniert. Sie stellt jedoch auch Forscher...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Erster Nachweis von Lithium in einem explodierenden Stern

Erstmals konnte das chemische Element Lithium in der ausgestoßenen Materie einer Nova nachgewiesen werden. Beobachtungen von Nova Centauri 2013 mit Teleskopen des La Silla-Observatoriums der ESO und in der Nähe von Santiago de Chile helfen bei der Aufklärung des Rätsels, warum so viele junge Sterne mehr von diesem Element enthalten als erwartet. Diese Entdeckung liefert ein seit langem fehlendes Teil im Puzzle der chemischen Entwicklungsgeschichte unserer Galaxie und ist ein großer Fortschritt für das Verständnis des Mischungsverhältnisses der chemischen Elemente in den Sternen unserer Milchstraße.

Das leichte chemische Element Lithium ist eines der wenigen Elemente, das nach unserer Modellvorstellung auch beim Urknall vor 13,8 Milliarden Jahren...

Im Focus: Durch den Monsun: Flugzeugmission zu Auswirkungen auf Luftqualität und Klimawandel

Mit dem Flugzeug von Zypern auf die Malediven und zurück. Was nach einer Urlaubsreise klingt, ist für 65 Atmosphärenforscher aus ganz Deutschland anspruchsvolle Arbeit: Bei einer Forschungsmission mit dem Flugzeug HALO des Deutschen Zentrums für Luft- und Raumfahrt untersuchen sie derzeit, ob und wie sich die Monsun-Regenfälle in Asien auf die Selbstreinigungskraft der Atmosphäre auswirken. Mit an Bord sind auch zwei Messgeräte des Karlsruher Instituts für Technologie (KIT): Die Karlsruher Klimaforscher messen dabei unter anderem die Konzentrationen von Ozon und Aceton. Das Max-Planck-Institut für Chemie in Mainz koordiniert die Kampagne.

„Die Erdatmosphäre kann sich von Treibhausgasen oder Abgasen aus dem Verkehr selbst reinigen. Dabei wandeln Hydroxyl-Radikale – das sind besonders...

Im Focus: Lichtschalter auf DVD

Da sich die elektronischen Eigenschaften eines optischen Speichermaterials schneller ändern als seine Struktur, könnte es neue Anwendungen finden

In DVDs steckt möglicherweise mehr als bisher angenommen. Das Material aus Germanium, Antimon und Tellur, in dem die Datenträger Information speichern, könnte...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Brandschutz im Tank- und Gefahrgutlager“ am 16. November 2015 im Essener Haus der Technik stellt praktische Lösungen vor

30.07.2015 | Veranstaltungen

12. BMBF-Forum für Nachhaltigkeit: Green Economy, Energiewende und die Zukunft der Städte

30.07.2015 | Veranstaltungen

Elektropott: Ruhrgebiets-Hackathon soll Innovation, Kreativität und Teamgeist junger Talente fördern

29.07.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Effiziente Infrarot-Wärme spart Zeit und Energie bei der Herstellung von Autoteppichen

30.07.2015 | Messenachrichten

Deutsche Börse platziert Hybridanleihe im Volumen von EUR 600 Millionen

30.07.2015 | Wirtschaft Finanzen

Tagung „Brandschutz im Tank- und Gefahrgutlager“ am 16. November 2015 im Essener Haus der Technik stellt praktische Lösungen vor

30.07.2015 | Veranstaltungsnachrichten