Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwimmen auf engstem Raum

14.02.2018

Göttinger MPI-Forscher entschlüsseln wie Mikroorganismen in komplexen Geometrien navigieren

Mikroben findet man in den unterschiedlichsten Lebensräumen und Ökosystemen, wo sie sich meist nahezu perfekt an ihre natürliche Umgebung angepasst haben. Insbesondere einzellige Mikroalgen leben nicht nur als Phytoplankton in den Meeren, sondern auch in feuchten Böden oder Oberflächenschichten von Gesteinen. Physiker vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation haben jetzt erstmals herausgefunden wie solche schwimmenden Mikroorganismen in komplexen Geometrien navigieren.


Schwimmen auf engstem Raum: Wie Mikroalgen in komplexen Geometrien navigieren.

Fabian Jan Schwarzendahl, MPIDS

Mikroorganismen können sich auf ganz unterschiedliche Arten fortbewegen. Viele Zelltypen haben spezielle Mechanismen entwickelt um durch Kriechbewegungen auf einer Oberfläche zu manövrieren. Insbesondere Mikroorganismen, die auch Photosynthese machen, leben jedoch nicht ausschließlich auf Oberflächen sondern auch in Flüssigkeit.

Dort können sie sich mittels sogenannter Flagellen, also mikroskopisch kleinen Härchen, fortbewegen. Im Falle der einzelligen Grünalge Chlamydomonas, einem in der Mikrobiologie weit verbreiteten Modellorganismus, schlagen zwei Flagellen synchron in einer Brustschwimmbewegung um die Zelle anzutreiben. So können die schwimmenden Mikroalgen ideal Nährstoffe und Lichtquellen aufspüren und legen dabei in jeder Sekunde etwa das Zehnfache ihrer eigenen Körpergröße als Strecke zurück.

Geometrie des Lebensraums beeinflusst Schwimmverhalten

Ein Forscherteam unter der Leitung der beiden Physiker Dr. Oliver Bäumchen und Dr. Marco Mazza vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation hat nun herausgefunden wie diese Zellen in den komplexen porösen Strukturen aus Flüssigkeit und Oberflächen ihres natürlichen Lebensraums navigieren.

„Wir haben es erstmals geschafft einzelne lebende Zellen in parallel angeordneten, voneinander isolierten Kammern auf einem Mikrofluidik-Chip einzuschließen, die jeweils nicht größer als der Durchmesser eines menschlichen Haares waren. Mittels dieses Modellsystems konnten wir unter kontrollierten Laborbedingungen untersuchen, welchen Einfluss die Geometrie des Mikrolebensraums der Zellen auf deren Schwimmverhalten hat.“, sagt Oliver Bäumchen.

Das Theoretiker-Team unter Leitung von Marco Mazza hat dazu ein Computer-Modell entwickelt und die Experimente mit Simulationen untermauert. Ihre Erkenntnisse haben die Forscher jetzt in einem Fachartikel im renommierten Wissenschaftsmagazin Physical Review Letters veröffentlicht.

Oliver Bäumchen befasst sich schon mehrere Jahre mit der Funktionsweise der Flagellen und den physikalischen Mechanismen, mit denen diese für die Zellen enorm wichtigen Härchen mit Oberflächen wechselwirken.

Physiker Bäumchen erläutert: „Die einzellige Mikroalge Chlamydomonas ist ein ideales Modellsystem um viele spannende biophysikalische Phänomene zu studieren, beispielsweise das Anhaften der Flagellen auf Oberflächen, das synchronisierte Schlagen der Flagellen als Zellantrieb, das Zusammenspiel von molekularen Motoren und die Funktionsweise von Photorezeptoren als Lichtsensoren der Zellen.“

Runde um Runde

Die Experimente der in Mikrochips eingeschlossenen lebenden Zellen wurde von Bäumchens Mitarbeitern Tanya Ostapenko und Thomas Böddeker durchgeführt. „Wir haben systematisch die Größe der Kammern und die Geometrie der Wände variiert und herausgefunden, dass die Zellen mit zunehmender Krümmung der Wände immer seltener der Oberfläche entkommen. Die Zellen schwimmen erstaunlich lange in der Nähe der Wand und drehen dort ihre Runden.“, sagt Tanya Ostapenko, die Erstautorin der Studie. Es zeigte sich, dass die Flagellen beim Auftreffen auf eine Wand gegen diese schlagen und dabei die Zelle unter einem ganz bestimmten Winkel ablenken.

„Der Winkel unter dem die Zellen wegstreuen liegt bei nur etwa 10-20 Grad. Dies ist so flach, dass Mikroschwimmer in runden Kammern, kaum dass sie an einer Wand abgelenkt wurden, wieder auf die Wand treffen und ausreichend gekrümmten Wänden somit nur schwer entkommen können.“, sagt Fabian Schwarzendahl, Doktorand in der Theorie-Gruppe unter der Leitung von Marco Mazza.

Das Computermodell des Theoretiker-Teams um Marco Mazza bestätigt die Experimente sogar quantitativ und liefert somit ein wertvolles Werkzeug, das die Forscher nun auch für Simulationen anderer Systeme anwenden wollen. Marco Mazza sagt dazu: „Es gibt einen ganz grundsätzlichen Unterschied zwischen den von uns untersuchten Mikroalgen und den bisher studierten bakteriellen Mikroschwimmern. Bei vielen Bakterien ist der Flagellenantrieb am „Heck“ der Zelle statt an deren „Bug“ angebracht. Daher hatte man bisher erwartet, dass sich die Mikroalgen ganz anders als die Bakterien verhalten, wenn sie auf eine Wand treffen. In Umgebungen, die dem natürlichen Lebensraum der Mikroalgen nachempfunden wurden, ist dies überraschenderweise aber gar nicht der Fall.“

Mikroschwimmer besser verstanden

Seit einigen Jahren nutzt man die Photosynthese der Mikroalgen um in mit Glasröhrensystemen ausgestatteten Bioreaktoren beispielsweise Biotreibstoffe herzustellen. Über diese Anwendungen hinaus ist jedoch gerade der Modellcharakter der Zellen für die Forschung von enormer Bedeutung. Oliver Bäumchen: „Die Flagellen der Mikroalgen unterliegen einem universellen Bauprinzip der Natur, das man auch als sogenannte Zilien oder Flimmerhärchen im menschlichen Körper findet.

Diesen kommen enorm wichtige Funktionen zu, beispielsweise sorgen die Zilien von Lungenepithelzellen für den Abtransport von Schleim und das Entfernen von Partikeln in den Atemwegen während die Geißeln von Spermien deren Motilität ermöglichen.“ Mit den Ergebnissen des Forscherteams versteht man nun besser, wie sich Mikroschwimmer auf engstem Raum verhalten. Dies könnte von großer Wichtigkeit sein um beispielsweise mittels künstlicher Mikroschwimmer Medikamente an ihr Ziel zu bringen.

Weitere Informationen:

http://www.ds.mpg.de/3209573/180213_pm_swimmer
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.068002

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics